
r·

Software Mechanisms for

Multiprocessor TLB Consistency

Shin-Yuan Tzou

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94 720

ABSTRACT

In a shared-memory multiprocessor, a page table entry (PTE) may be replicated in multi­

ple translation lookaside buffers (TLBs), causing an inconsistency problem when the PTE

is updated. More generally, this problem exists among virtually-tagged caches, which

keep PTE information, such as protection bits, in every cache line. Operating systems

and applications that exploit virtual memory remapping must consider the overhead of

synchronizing TLBs.

We explore a spectrum of software TLB synchronization algorithms for various con­

sistency semantics and TLB characteristics. We analyze and simulate the performance

of the three most general ones: 2-phase, optimistic-synchronous, and optimistic­

asynchronous. The queueing models for these algorithms do not have product-form solu­

tions because of the interaction among processors (for example, the 2-phase algorithm

enforces locking by stalling processors). Instead, we obtain approximations using a com­

putationally efficient iterative analysis method, the accuracy of which is verified by simu­

lation results.

The performance results show that software TLB synchronization algorithms do not scale

well with (1) the number of processors, (2) the rate of PTE updates, or (3) the overhead of

flushing a TLB entry. Hence TLB synchronization should be avoided in some future

architectures (e.g., scalable cache-coherent shared-memory multiprocessors) and under

some workloads (e.g., moving high-bandwidth multimedia data to a user address space by

virtual memory remapping). To this end, we describe mechanisms for tolerating TLB

inconsistency, and classify them according to three fundamental types of tolerable incon­

sistency: safe, transient and trusted inconsistency. We also discuss how to fit these

mechanisms into the software architecture of the virtual memory system.

;

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
Software Mechanisms for Multiprocessor TLB Consistency

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In a shared-memory multiprocessor, a page table entry (PTE) may be replicated in multiple translation
lookaside buffers (TLBs), causing an inconsistency problem when the PTE is updated. More generally, this
problem exists among virtually-tagged caches, which keep PTE information, such as protection bits, in
every cache line. Operating systems and applications that exploit virtual memory remapping must consider
the overhead of synchronizing TLBs. We explore a spectrum of software TLB synchronization algorithms
for various consistency semantics and TLB characteristics. We analyze and simulate the performance of
the three most general ones: 2-phase, optimistic-synchronous, and optimistic-asynchronous. The queueing
models for these algorithms do not have product-form solutions because of the interaction among
processors (for example, the 2-phase algorithm enforces locking by stalling processors). Instead, we obtain
approximations using a computationally efficient iterative analysis method, the accuracy of which is
verified by simulation results. The performance results show that software TLB synchronization
algorithms do not scale well with (1) the number of processors, (2) the rate of PTE updates, or (3) the
overhead of flushing a TLB entry. Hence TLB synchronization should be avoided in some future
architectures (e.g., scalable cache-coherent shared-memory multiprocessors) and under some workloads
(e.g., moving high-bandwidth multimedia data to a user address space by virtual memory remapping). To
this end, we describe mechanisms for tolerating TLB inconsistency, and classify them according to three
fundamental types of tolerable inconsistency: safe, transient and trusted inconsistency. We also discuss
how to fit these mechanisms into the software architecture of the virtual memory system.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

111

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

To my parents, my wife and my two daughters.

Acknowledgements

I would like to thank many people who have helped me finish this
dissertation. David Anderson, my research advisor, provided financial support
and valuable advice throughout my graduate study at Berkeley. He worked
closely with me on the DASH project, on which Chapter 5 is based. We had
many inspiring discussions and arguments, through which we learned how to
design and build a system. David also helped a lot in the preparation of this
dissertation. Domenico Ferrari, who created the DASH project with David,
always gave me confidence when I needed it. He also provided valuable
comments on the dissertation; his thoroughness greatly improved the quality of
it. Charles Stone, the third committee member, taught me BLSS, the tool I used
for simulation.

Many others have helped me along the way and deserve thanks. Raj
V aswani implemented the DASH message-passing system. Ramesh Govindan
implemented part of the DASH virtual memory system. G. Scott Graham
participated in the design of the DASH virtual memory system and the
mechanisms for TLB consistency. This research was partly inspired by my
CS252 term project on the in-cache address translation mechanism of SPUR.
Young-Chul Shim was my partner of the project; David Wood helped a lot in
setting up the project. I would also like to thank other members of the DASH
group and members of the Tenet group for numerous stimulating technical
conversations.

Most of all, I wish to thank my wife. She fully supported my decision to
return to school after we had been used to a comfortable life style, and sacrificed
her own ambitions to mine. She cared our children and gave me a warm home
while I spent most of my time on my own work. Her patience and constant
support have made this dissertation possible.

The material presented here is based on research supported in part by the
Defense Advanced Research Projects Agency (DoD) Arpa Order No. 4871,
monitored by Naval Electronic Systems Command under Contract No. N00039-
84-C-0089, the California MICRO program, AT&T Bell Laboratories, Digital
Equipment Corporation, International Business Machines Corporation, Olivetti
S.p.A, Hitachi, and the International Computer Science Institute.

ii

Contents

Acknowledgements .. 11

Contents ... u1

Figures ... VI

Tables ... vii

1. Introduction .. 1

1.1. Motivation .. 1

1.2. Research Issues 3

1.3. Organization of the Dissertation... 3

2. The Problem of TLB Inconsistency in Shared-Memory Mul-
tiprocessors ... 5

2.1. The Machine Model and Terminology... 5

2.1.1. Overview of the model ... 5

2.1.2. TLB parameters... 6

2.1.3. Discussion of concurrent PTE updates 7

2.2. Problem Statement 9

2.3. Discussion of In-Cache Address Translation 10

2.3.1. Eliminating the need for separate TLBs 10

2.3.2. Address translation information in every cache line 11

2.3.3. TLB inconsistency without separate TLBs 12

2.4. Classification and Software Causes of TLB Inconsistencies 13

2.4.1. Types ofTLB inconsistency ... 13

2.4.2. OS functions causing TLB inconsistency 15

2.4.2.1. Supporting a single-level store 15

2.4.2.2. Moving data between virtual address spaces 16

2.4.2.3. Supporting database functions.................................... 16

3. Software TLB Synchronization Algorithms 17

3.1. Semantics of Consistency .. 17

3.2. Algorithms for Updating a Page Table Entry Consistently 18

3.2.1. Overview .. 18

3.2.2. Basic algorithms ~0

3.2.3. Variants of basic algorithms ... 24

3.3. Discussion 25

111

iv

3.3.1. Disabling interrupts 25
3.3.2. Interprocessor requests and hatching 26
3.3.3. Deadlocking ... 27

4. The Performance of TLB Synchronization Algorithms 28
4.1. The Performance Model 28

4.1.1. Event arrival and execution .. 28
4.1.2. Interarrival and service times 29
4.1.3. Algorithm-specific parameters .. 30
4.1.4. Performance measures .. 30

4.2. Performance Analysis .. 30
4.2.1. The 2-phase algorithm ... 30

4.2.1.1. Method of analysis ... 31
4.2.1.2. Acknowledgement and synchronization time 31
4.2.1.3. Busy periods .. 33
4.2.1.4. The complete procedure ... 36

4.2.2. The ·optimistic-synch algorithm .. 37
4.2.2.1. Arrival rates ... 37
4.2.2.2. Acknowledgement and synchronization time 38
4.2.2.3. Busy periods .. 40
4.2.2.4. The complete procedure ... 41

4.2.3. The optimistic-async algorithm... 41
4.2.3.1. CPU overhead 42
4.2.3.2. Latency .. 42

4.3. Simulation ... 44
4.3.1. The simulators ... 44
4.3.2. Comparison.ofsimulation and analytic results 45

4.3.2.1. The 2-phase algorithm... 46
4.3.2.2. The optimistic-synch algorithm 47
4.3.2.3. The optimistic-async algorithm 4 7

4.4. Performance Results .. 48
4.4.1. Choosing workloads ... 50
4.4.2. The effect of the number of processors 52
4.4.3. The effect of the request rate .. 54
4.4.4. The effect of service time 54

4.5. Summary and Conclusions .. 58

5. Tolerating TLB Inconsistency 60
5.1. Three Types of Tolerable TLB Inconsistency.................................. 60

5.1.1. Safe inconsistency.. 60
5.1.2. Transient inconsistency... 61
5.1.3. Trusted inconsistency .. 63

5.2. Software Structure of the VM System

5.2.1. A portable mod.el

5.2.2. Hiding TLB inconsistency inside the machine-dependent
part .. .

5.2.3. Handling TLB inconsistency outside the machine-
dependent part

5.3. A Virtual Memory System Design .. .

5.3.1. Overview and context

5.3.1.1. Object-oriented programming

5.3.1.2. IA>cal kernel structure .. .

5.3.1.3. The DASH virtual memory system

5.3.2. Interface to the machine-dependent part

5.3.3. Paging

5.3.3.1. Overview: flow and states of physical pages

5.3.3.2. The unmapper process

5.3.3.3. ~underer processes

5.3.3.4. Managing TLB inconsistency

5.3.4. Message-pas-sing using virtual-memory remapping

5.3.4.1. Software copying vs. VM remapping

5.3.4.2. Initial experience of VM remapping on a uniproces-
sor .. .

5.3.4.3. An overview of the DASH message-passing system

5.3.4.4. The IPC region of the VM system

5.3.4.5. Message-passing operations

5.3.4.6. Managing TLB inconsistency

5.3.5. Mechanisms not suitable for tolerating TLB inconsisten-
cy

6. Related Work

6.1. Software Mechanisms

6.2. Hardware Mechanisms

6.3. Performance Evaluation

7. Concluding Remarks .. .

7.1. Contributions .. .

7.2. Summary of Results

7 .3. Future Work

Bibilography .. .

v

64
64

65

65
66
66
66
67
68
69
72
72
72
74
74
75
75

76

77
80
82
84

85

87
87
88
90

91
91
91
93

95

Figures

1.1. Kernelization creates extra address space boundaries 2
2.1. The model of a shared-memory multiprocessor 6
2.2. A PTE may be overwritten as a result of setting status bits 9
2.3. Updating a PTE on machines with virtually tagged caches 12
3.1. Consistency semantics .. 18
3.2. The 2-phase algorithm .. 22
3.3. The optimistic algorithm .. 23
4.1. A simplified timing diagram of the 2-phase algorithm........................ 34
4.2. Simulation vs. analysis: the 2-phase algorithm................................... 47
4.3. Simulation vs. analysis: the op-synch algorithm 48
4.4. Simulation vs. analysis: the op-async algorithm 49
4.5. The effect of the number of processors on performance 53
4.6. The effect of the request rate on performance 55
4.7. The effect of service time on performance.. 57
5.1. Transient TLB inconsistency ... 62
5.2. A portable model of the virtual memory system 64
5.3. An overview of the DASH VM system .. 69
5.4. The flow of physical pages .. 73
5.5. Throughput of message-passing: initial experience 77
5.6. Cost breakdown of message-passing: initial experience...................... 78
5.7. Software architecture of the message-passing system 79
5.8. User object reference tables ... 83

vi

Tables

2.1. Some real TLBs and their properties .. . 8

2.2. Classification ofTLB inconsistency ... 14

3.1. Summary of algorithms for solving TLB inconsistency 19

5.1. Simplified interface to kernel's message-passing system 68

5.2. Simplified interface to the VAS_MD class .. 70

5.3. Interface to the IPC REGION MGR class ... 82
- -

Vll

Chapter 1

Introduction

The topic of this dissertation is translation lookaside buffer (TLB) con­

sistency in shared-memory multiprocessor computer systems. We first study

and evaluate software TLB synchronization algorithms, and show that the per­
formance of these algorithms does not scale well with the number of processors,

the rate of TLB synchronization operations, or the overhead of flushing a TLB

entry. We then propose a virtual memory system design that tolerates TLB

inconsistency. The design avoids TLB synchronization by exploiting trust rela­
tionships and lazy remapping. When TLB synchronization is necessary, the

design does it efficiently by exploiting asynchrony.

The research area of this work is Operating Systems. It also overlaps the

area of Performance Evaluation because it develops an iterative technique for

analyzing the performance of TLB synchronization algorithms, and verifies the

analysis with simulation. Additionally, it is related to the area of Computer

Architecture because it reviews hardware mechanisms for TLB consistency, and

shows the connection between the problem of TLB inconsistency and that of

meta-data inconsistency of virtually tagged caches.

The first chapter explains motivations, identifies research issues, and pre­

views the rest of the dissertation.

1.1. Motivation

Most modem machine architectures provide paged virtual memory. Such

machines use page tables to define virtual-to-physical memory mappings of vir­

tual address spaces. Operating systems use paged virtual memory for various

purposes, such as (1) supporting demand paging, and (2) logically moving virtual

pages between virtual address spaces. The second usage (or virtual memory
remapping) potentially reduces the overhead of data movement by avoiding

software data copying. Consequently, it makes the following directions in

operating systems research more feasible.

• Kernelization, i.e., reducing the size and functionality of an operating
system kernel by moving services out of the kernel into user-level
processes. Such a system is more extensible and maintainable, and
makes it easier for multiple servers to coexist as different user processes
or libraries. The V kernel [Che84] and QuickSilver [HMS88] are two

representative examples. Mach is also targeting this direction [Ras89].

However, this approach creates additional address space boundaries.

Invoking a system service may involve passing control and data across
address space boundaries many times, thereby limiting the performance

1

2

of such a system. Figure 1.1 illustrates this problem.

• High-performance 1/0. Processor performance has been improved at a
much faster pace than that of 1/0 subsystems. As a result, 1/0 has
become the performance bottleneck in many systems. For example, no
existing system can achieve 1 Gbps user-to-user communication
throughput, although 100-MIPS processors and 1 Gbps fiber optics are
available now [Lei88]. To achieve high 1/0 performance, many mechan­
isms in the operating systems and host interface must be drastically
improved. Data movement in the operating system is such a mechan­
ism. At very high throughput, an extra data copy could easily double
the overhead of protocol processing or the overhead of delivering data to
a user process.

Virtual memory remapping can eliminate the data movement bottleneck
only if updating a page table entry (PTE) is significantly faster then copying a
page. The success of remapping in uniprocessors does not imply the success in
shared-memory multiprocessors, as the performance tradeoff is different
[Fit86, FiR86]. In most uniprocessors, updating a PrE takes only a few machine
cycles. On the other hand, in shared-memory multiprocessors, a PrE may be
replicated in multiple TLBs, causing an inconsistency problem when the PrE is
updated. A TLB synchronization algorithm usually involves interprocessor
interrupts and synchronization, and is potentially expensive. Hence the over­
head of updating a PrE, which includes the overhead of managing TLB

User Address Spaces

Figure 1.1. Kernelization creates extra address space boundaries. A
piece of data is often moved across address space boundaries many times.

3

inconsistency, could also be high.

The goal of this dissertation is to understand the performance impact of

maintaining TLB consistency on virtual memory remapping, and to develop

mechanisms for efficiently exploiting virtual memory remapping in shared­

memory multiprocessors. This work links the above two operating systems

research directions (kemelization and high-performance 1/0) with the shared­

memory multiprocessor architecture, which is cost-effective, has abundant com­

puting power, and can support parallelism.

This dissertation differs from previous research on TLB consistency in its

emphasis on scalability. The performance of TLB synchronization mechanisms

is not critical in most existing shared-memory multiprocessors, because they typ­

ically have a small number processors and update PTEs at a low rate (primarily

for demand paging). On the other hand, we intend to support virtual memory

remapping at a high rate for kemelization and high-performance 110. We also

intend to support systems with a large number of processors and other hardware

features that make TLB synchronization expensive.

1.2. Research Issues

The major research issues of this dissertation are the following.

(1) Is TLB inconsistency a fundamental problem of shared-memory multipro­

cessors? Is it still relevant if the hardware eliminates TLBs by using vir­

tually tagged caches?

(2) What is the range of possible software TLB synchronization algorithms?

Is hardware support for TLB consistency necessary?

(3) What are the performance tradeoffs among different algorithms? How

can the performance ofTLB synchronization algorithms be evaluated?

(4) What are the likely workloads ofTLB synchronization or virtual memory

remapping mechanisms? Do the algorithms perform and scale well

under these workloads?

(5) Can we take advantage of high-level OS semantics in achieving scalable

TLB consistency mechanisms? Can operating systems reduce the over­

head ofTLB synchronization by tolerating TLB inconsistency? How?

1.3. Organization of the Dissertation

We address the above issues and carry out the research in four stages: (1)

understanding the problem, (2) finding direct solutions to the problem, (3)

evaluating these solutions and pointing out their drawbacks, and (4) proposing a

system design that overcomes the drawbacks.

The organization of this dissertation reflects these stages. Chapter 2 states

the problem of TLB inconsistency in shared-memory processors. It also classifies

TLB inconsistency, and summarizes how and when operating systems remap

pages. Chapter 3 defines consistency semantics, and presents a set of software

TLB synchronization algorithms for various hardware characteristics and

4

consistency semantics. Chapter 4 evaluates the performance of these algo­
rithms. It analyzes three major algorithms using an iterative analytic method,

and verifies analytic results with simulation. It also predicts the workload of
future systems. Chapter 5 describes principles for tolerating TLB inconsistency,
and presents an integrated system design that applies those principles. This
chapter also discusses the software structure of the virtual memory system for
handling TLB inconsistency.

Finally, Chapter 6 reviews related work on TLB inconsistency, including
possible hardware solutions; Chapter 7 summarizes the main results and contri­
butions of this work, and discusses future research directions.

Chapter 2

The Problem of TLB Inconsistency
in Shared-Memory Multiprocessors

This chapter describes the problem of TLB inconsistency in shared-memory
multiprocessors. It is organized as follows. Section 2.1 presents our model of a
shared-memory multiprocessor. Section 2.2 states the problem. Section 2.3
argues that the problem exists even when in-cache address translation elim­
inates separate TLBs. Section 2.4 classifies TLB inconsistency, and discusses
operating system operations that cause inconsistency.

2.1. The Machine Model and Terminology

This section presents our model of a shared-memory multiprocessor. The
purpose is to specify the target machine, and to define the terminology. We con­
centrate on address translation, page tables, translation lookaside buffers, and
setting dirty and referenced bits. We omit details that are irrelevant to the TLB
inconsistency problem. Our model only represents one type of multiprocessors;
other types can be found in [Ens74], [Sat80], [GaP85], and [Mey85].

2.1.1. Overview of the model

As shown in Figure 2.1, the system contains N processors sharing a com­
mon memory subsystem (or main memory) via an interconnection network. Pro­
cessors run in parallel, and each of them can access any location of the memory
subsystem. The hardware supports instructions for serializing concurrent
updates to a shared memory location, such as instructions for atomic read­
modify-write or atomic fetch&op.

The system supports virtual memory. A physical address uniquely
identifies a memory location in the memory subsystem. The software, on the
other hand, makes a memory reference using a virtual address in a virtual
address space (VAS). There are multiple virtual address spaces, so a virtual

address is not unique1. Address translation is the procedure that converts a vir­

tual address generated by the software to a physical address used by the main

memory; it is done within a processor2.

1 Some systems extend a virtual address into a global uirtual address, say, by prepending a VAS identifier

to it. In our diacussion, we do not distinguish between a virtual address and a global virtual address unless

otherwise noted.
2 We exclude architectures that translate addresses along the interconnection network or at the memory

subsystems, such as in the design proposed by Telleret al. (see Section 6.2) [TKS88].

5

I

6

Memory Subsystem Page Table

protection status page no .
..

_l
I Interconnection Network l

TLB TLB

• • •

Processor Processor

Figure 2.1. The model of a shared-memory multiprocessor.

Page tables store mapping information for address translation. They are

located in main memory, and are collections of page table entries (PTEs). The

granularity of address translation is a page. Both main memory and V ASs are

divided into pages (virtual and physical pages respectively). Each PTE stores

the mapping information and status of a virtual page. It contains (a) the physi­

cal page to which the virtual page is mapped, if any; (b) protection bits defining

access rights to the page, such as read-only and read/write; and (c) status of the

page, such as the referenced bit and dirty bit3• Page tables are accessible to the

hardware; our discussion ignores other forms of mapping information that are

used exclusively by the operating system.

Each processor has a translation-look-aside buffer (TLB) for caching

recently used page table entries [Lee60]. A PTE stored io the TLB (possibly in a

different format) is called a TLB entry. TLB hit means that a needed PTE is in

the TLB on address translation; TLB miss means the opposite. The hardware

supports instructions for flushiog TLB entries on a processor, but it does not

ensure consistency among a PTE and the correspondiog TLB entries. We will

discuss more on TLBs in the next section.

2.1.2. TLB parameters

3 The referenced bit is set if this page has been accessed since the bit was cleared. The dirty bit is set if

the page has been modified.

7

A processor carries out a memory reference as follows4 . It first loads the
corresponding PTE into its TLB, if it is not already in the TLB. It then
translates the virtual address using a TLB entry. The reference is rejected if the
virtual page is not mapped to a physical page, or the type of access is not
allowed. A rejected memory reference generates a fault, a software exception
handled by the operating system. If the reference is accepted, the processor
accesses the data and, when necessary, adjusts the referenced and dirty status
in the TLB entry and the PTE.

Our model allows two variables in the above process:

• A PTE may be loaded into a TLB by hardware, or by software (via a
trap).

• The referenced or dirty bit of a PTE in main memory may or may not be
set atomically.

The second variable is an issue because the unit of memory writes is a word
instead of a bit in most systems. In other words, to set a bit in a PTE, a proces­
sor must write a complete word. We consider a status bit being set atomically if
the update to the PTE is serializable with other concurrent PTE updates. In
general, a processor may set a status bit in five ways (1) not supporting the bit at

all5, (2) generating an exception and letting the software do it, (3) performing an
atomic read-modify-write (R-M-W) or fetch&op cycle to update the PTE, (4) per­
forming a non-atomic operation to update the PTE (the opposite of (3)), or (5)
skipping the read cycle, and formulating the new PTE using information stored
in the TLB. We consider the bits being set non-atomically in case (4) and (5).
Table 2.1 lists these two variables for some real systems.

In addition, our model has a third variable for TLBs: whether a TLB can be
controlled by only one processor, or by all processors. In most existing systems,
a TLB is internal to a processor and cannot be accessed externally. The only
known exception is the Motorola MC88200 cache and memory management unit
(CMMU), which can be controlled by all MC88100 CPUs, or even by other
CMMUs [MMM88a, MMM88b].

Chapter 3 will present TLB synchronization algorithms based on the three
variables discussed in this section.

2.1.3. Discussion of concurrent PTE updates

This section discusses the serializability of concurrent PTE updates, which
are possible on a multiprocessor. A PTE may be updated in three situations:

(1) for setting the dirty bit on a memory reference,

(2) for setting the referenced bit on a memory reference, and

4 Without losing generality, this diBCUssion does not consider data caching.

' The operating system either does not use the bit, or emulates it with a software mechanism, which is as­
sume to be atomic.

8

Table 2.1. Some real TLBs and their properties.

TLB
multiprocessor loaded set PrE set PrE

systems by ref bit by dirty bit by

VAX 8800 H/W SfWl non-atomic 2

NS32332
Encore

H/W SfWl non-atomic 2

Multi max

SUN3MMU none SIW S/W3 S/W3

Intel386 Sequent H/W
atomic atomic

on chipTLB Symmetry R-M-W R-M-W

Intel NlO Olivetti MllO atomic
SIW'

on chip TLB (being developed) H/W R-M-W

IBMRP3 RP3 SIW" SfWl SfWl

1 The hardware does not set the status bit. The operating system emulates it by invalidating the page (for the

referenced bit) or protecting the page as read-only (for the dirty bit).

2 The bit is set by a non-atomic R-M-W on a TLB miu, and by a write on a TLB hit.

3 The hardware set status bits only in the MMU. The operating system explicitly reads a TLB entry when it

needs a status bit.

4 The hardware generates a trap on the first write to a page.

5 RP3 was designed to load TLB entries by hardware, but the RP3 prototype loads TLB entries by a software

TLB miss handler [Ros89].

(3) for other software operations.

In our machine model as well as in some real systems, (1) or (2) may be done

non-atomically (see Section 2.1.2 and Table 2.1). If not handled properly, this

nH~v ~~nQ~ s:a nPwlv nndaW PTE to be overwritten. as illustrated in Figure 2.2.

proc 1loads
ptel

into its TLB

proc 1 pre_pares
to wnte back
pte 1 + status

OS modifies
ptel to pte2

on proc 2

ta Time

proc 1 overwrites
pte2 with

pte 1 + status

Figure 2.2. A PrE may be overwritten u a result of .etting status

bits. The hardware writes a whole word to set a bit in a PI'E. The rest of the

word may come from a stale TLB entry.

but nothing else.

9

On the other hand, (2) has undesirable effects on (1). It may cause a dirty

bit to be lost. Further, when the dirty bit is set by hardware, this problem can­

not be fixed by using software algorithms. Hence, if the operating system relies

on dirty bits, it should suppress non-atomic PTE updates caused by setting refer­

enced bits. The operating system can force the hardware not to set the refer­

enced bit by setting the bit in every PTE. When a processor loads a PTE into a

TLB entry, it will never attempt to set the referenced bit in the PrE again,

because the bit has already been set. The operating system can still obtain page

reference information by initially invalidating a PrE to cause a page fault on the

first reference, as in V AXNMS [LeL82]. Wood and Rosenburg also showed

software mechanisms for implementing dirty and referenced bits
[Ros89, WoK89].

2.2. Problem Statement

In a shared-memory multiprocessor, a PrE may be replicated in multiple

TLB entries at the same time. Without hardware consistency support, incon­

sistency may occur when any of the replicated copies is changed. Here, we con­

centrate on the inconsistency between a PTE and a TLB entry, although TLB

entries may differ among themselves too.

The operating system uses PrEs to define how the memory system should

behave, and makes memory management decisions based on status bits stored in

PrEs. On the other hand, a processor translates addresses using TLB entries,

and writes status bits back to PrEs according to the state of TLB entries. The

following problems may occur if a PTE is inconsistent with a corresponding TLB

entry.
(1) A memory reference may produce incorrect results, e.g., when a

PrE allows read-only access but the corresponding TLB entry

10

allows read/write access.

(2) A processor may not set status bits properly, e.g., when the dirty bit
is zero in a PTE but is one in the corresponding TLB entry.

(3) A processor may overwrite a newly updated PTE with a old TLB
entry if it sets a status bit non-atomically (see Figure 2.2).

The above problems can be solved by flushing the corresponding TLB
entries after updating a PrE. This operation is straightforward in a uniproces­
sor, or even in a multiprocessor if a PrE is only cached in one TLB at a time. On
the other hand, flushing multiple TLBs is hard because it involves interprocessor
requests and synchronization. Further, the overwriting problem (problem (3))
complicates the updating of a PTE.

A multiprocessor system may have a PrE cached in multiple TLBs simul­
taneously if the operating system (1) supports multiple concurrent threads in
one VAS, (2) supports symmetric pageable kernel, or (3) does not flush the entire
TLB of a processor on a context switch. The last case is possible when the
hardware appends an identifier to each TLB entry, as in MIPS
[MMM86, TBJ88]. Many multiprocessor operating systems have some or all of
the above features. Without these features, the benefit of having multiple pro­
cessors is limited, because only disjointed jobs may run in parallel.

2.3. Discussion of In-Cache Address Translation

This section shows that TLB inconsistency is a fundamental problem of
shared-memory multiprocessors. It exists even when separate TLBs are elim-

inated by using virtually tagged caches6•

2.3.1. Eliminating the need for separate TLBs

Modern architectures use cache memory to improve system performance
[Hil87, PHH88, Smi82]. Although cache design is an important research topic, is
not the theme of this dissertation. We simply assume caches are correct,
coherent, and transparent to our machine model. We are interested only in one

issue of cache design-whether a cache is physically tagged7 or virtually tagged.

A physically tagged cache is indexed and tagged by physical addresses. To
check whether there is a cache hit on a memory reference, the virtual address
generated by the software must be translated into a physical address. It is pos­
sible to do address translation and cache access in parallel, but the cache size
must be less than the page size times the set associativity. This restriction is
undesirable for systems that require both a fast instruction cycle time and a
large cache size.

1 To be more preciae, in this case the problem should be defined as the inconsistency of PI'E information.

7 Every cache line stores memory data as well as an addreu tag. On a memory reference, the tags of

cache lines are compared with the target addreu to determine whether there is a hit.

11

A virtually tagged cache, on the other hand, is indexed and tagged by vir­

tual addresses. Such a cache does not need address translation on a cache hit, in

which case the physical address address is not used at all. Thus, it removes the

above restriction of physically tagged caches, though it has its own problems,

e.g., the difficulty of supporting virtual address synonyms [Goo87, Hil86]. Virtu­

ally tagged caches have been used in many real or research systems, such as Sun

3/200 series [S8885], Intel 860 [III88], SPUR [Hil86], and VMP [CSB86].

The importance of a TLB decreases when address translation is no longer

on the critical path on a memory reference. Consequently, some architects have

made the tradeoff to eliminate separate TLBs in order to reduce hardware com­

plexity and to use precious chip area for more useful purposes. Without separate

TLBs, the hardware directly accesses the PTE to translate an address. Often,

the needed PTE is itself cached; accessing it is not a main memory reference but

a more efficient cache reference. In this sense, we can view the system as having

a "TLB" in the cache. Wood et al. called this mechanism in-cache address trans­

lation [Rit85, WEG86].

In-cache address translation eliminates separate TLBs, and the multipro­

cessor cache coherency mechanism, assuming there is one, ensures that cache

copies of a PTE are consistent. This seems to have solved the problem of TLB

inconsistency. On the contrary, it has not. The following sections explain why.

2.3.2. Address translation information in every cache line

Every virtually tagged cache line stores meta-data in addition to data.

Specifically, every line keeps the protection bits of PTE corresponding to the line.

These bits are essential to performance, for without them a cache reference

would need an extra PTE reference to check protection. Moreover, in some sys­

tems, a cache line even keeps the physical address of the line to reduce the cost

of writing back a line. Therefore, every cache line has, at least partially, the

functionality of a TLB entry.

With in-cache address translation, the address translation information of a

page is stored in:
(1) the PTE,

(2) the cached copies of the PTE, and

(3) the control field of every cache line.

Indeed, in-cache address translation eliminates separate TLBs, and

achieves consistency between (1) and (2). However, it also turns every cache line

into a TLB entry, and introduces an inconsistency problem between (3) and

(1)/(2) (see Figure 2.3).

No existing system provides hardware consistency support between (3) and

(1)/(2). In fact, this is difficult for hardware. To do so, the hardware must be

able to (a) detect the updating of a PTE, which is a regular memory write; (b) cal­

culate the address of the target page using the address of the PTE; and (c)

i

Page Table Cache Page Table Cache

Figure 2.3. Updating a PTE on machines with virtually tagged
caches. A writable page with three lines cached (right) is reprotected as
read-only (left). A subsequent write to the page may be granted because the
three cache lines are inconsistent with the newly updated PrE.

12

atomically modify/invalidate all cache lines corresponding to the target page on
all processors. Most systems, instead, simply provide a command to flush a
cache line, and/or all cache lines in a certain address range. It is up to the
software to make sure that the virtual address caches are flushed properly when
a PTE is modified.

Flushing a virtually tagged cache line may be more complicated then flush­
ing a simple TLB entry. If the cache does not store the physical address of the
page, an address translation is needed to write a dirty line back to main
memory. The situation would be complex if the PTE for this line has been
changed after the line was brought into the cache. In this case, the address
translation may fail, generating a page fault.

The total overhead of cache flushing depends on basic hardware costs,
software overheads, and, most important, the rate of page table updating.
Cheng reported that on a Sun workstation running UNIX, the overhead of cache
flushing ranges from 0.13% to 3% of its total CPU time [Che87].

2.3.3. TLB inconsistency without separate TLBs

We now examine the three problems listed in Section 2.2, and show that
they exist in machines with virtually tagged caches. First, using a stale cache
line is equivalent to using a stale TLB entry. A cache line is brought into the
cache based on a PTE. It becomes stale if the PTE is updated later, and may
cause a memory reference to produce incorrect results. Second, status bits may
not be set properly. For example, if the operating system clears the dirty bit of a
page while a writable cache line for the page exists, a subsequent write to the

I

13

page may not cause the dirty bit to be set in the PrE. Finally, a PTE may be
overwritten if (a) the cache does not set status bits in PTEs atomically, or (b) the
cache does not store the physical address of the line in the control field. We
explain (b) in the next paragraph; (a) is obvious.

To write back a line, the cache needs to perform address translation to
obtain the physical address of the line. If the PTE corresponding to the cache
line has been updated (say, invalidated) since the line was loaded, the address
translation may fail, generating an exception. To avoid data loss, the exception
handler has to change the PTE back to its old value to finish the writeback
operation. In other words, the cache forces the software to overwrite the PTE.
Although the software can restore the PTE later, the old PTE may have been
used to load other cache lines by that time.

The basic technique for fixing the above problems is the same as that for
fixing TLB inconsistency-flushing stale entries. Other issues such as interpro­
cessor synchronization are also the same for both cases. Hence the algorithms
for TLB synchronization work for virtually tagged cache synchronization. The
only difference is that flushing a TLB entry is usually faster than flushing all
cache lines.

We have shown that the inconsistency between a PTE and TLB entries is
equivalent (for problems as well as solutions) to the inconsistency between a
PTE and the meta-data stored in virtually tagged lines. In the rest of this
dissertation, we will use the term "TLB inconsistency" to refer both. To be more
precise, we should define it as the inconsistency among replicated copies of PTE
information. We still use "TLB inconsistency" because it is a well-known term.

2.4. Classification and Software Causes of TLB Inconsistencies

This section classifies TLB inconsistencies, and enumerates the operating
system functions that cause the various types ofTLB inconsistencies.

2.4.1. Types of TLB inconsistency

Table 2.2 lists possible ways that a TLB can differ from the corresponding
PTE, and, for each one, gives the potential damage and how it may occur. The
goal here is to enumerate all types ofTLB inconsistency; Section 2.4.2 discusses
how real applications change PrEs.

The table uses the following legends to represent inconsistency.

• For a status bit, condition T0-+1 means it is zero in the TLB entry but
has the potential of becoming one. Condition TlPl means it is one in
both the PTE and the TLB entry, or can never become one in the TLB
entry (e.g., the dirty bit of a read-only TLB entry). Condition TlPO
means it is one in the TLB entry but zero in the PTE.

• The protection bits define multiple access rights, such as kernel write
and user write. Condition T=P means the access rights defined by both

14

Table 2.2. Classification of TLB inconsistency.

How Pr and TLB differ When the OS

status
bit

TO~l

TO~l

TlPl

TlPl

TlPO

TlPO

TlPO

updates a PrE in Possible damage
protection bits
and page I main memory to

T<Pand EQ increase rights
overwriting PrE, recoverable
rejecting reference, recoverable

T>P orNE reduce rights, or overwriting PrE, nonrecoverable
change page number illegal reference, nonrecoverable

T<P and EQ increase rights rejecting reference, recoverable

T>P orNE
reduce rights, or illegal reference, nonrecoverable
change page number

T=P and EQ clear status bits wrong PrE status

T<P and EQ clear status bits, and rejecting reference, recoverable
increase rights wrong PrE status

clear status bits, and illegal reference, nonrecoverable
T>P orNE increase rights or wrong PrE status

change page number

entries are identical. Condition T<P means the rights defined in the
TLB entry are a proper subset of those defined in the PTE. Condition
T>P covers the remaining case.

• For the physical page number, condition EQ means both entries have

the same number, and NE means the opposite.

The conditions for both status bits may be different, e.g., the referenced bit

satisfies TlPl and the dirty bit satisfies TO. For simplicity, Table 2.2 considers

only one status bit. The possible damage listed in the table are the three prob­

lems described in Section 2.2, except that they are further divided into recover­

able and nonrecoverable. An error is recoverable if it can be detected (e.g., via a
page fault) and corrected.

A recoverable error may occur when a TLB entry has less access rights than

the corresponding PrE. Such a TLB entry may reject a legal memory reference

(i.e., a reference allowed by the correct PrE), causing a page fault. The page

fault handler recovers the problem by flushing the stale TLB entry on the fault­

ing processor, and resuming the interrupted memory reference. Such a TLB

entry may also be written back to the PTE as a result of setting status bits, and

may even be loaded again into other TLBs. We assume that the operating sys­

tem stores address translation information also in other data structures, such as

15

in machine-independent memory maps; thus it can detect and fix an overwritten

PTE on a page fault caused by insufficient access rights.

2.4.2. OS functions causing TLB inconsistency

This section examines operating system functions that update PTEs; Sec­

tion 4.4.1 discusses their workloads. In these functions, the operating system

updates a PTE only in limited ways; it does not update a PTE arbitrarily. Basic

PTE updates are:
(1) clearing a referenced bit,

(2) clearing a dirty bit,

(3) validating a page (increasing access rights),

(4) invalidating a page (decreasing access rights),

(5) reprotecting a page to read-only (decreasing access rights), and

(6) reprotecting a page to read/write (increasing access rights).

The operating system does these operations one at a time. It does not combine

several updates into a single one. Note that changing the physical page number

is not listed, because it is normally done when a PTE is invalid.

Only (4) and (5) in the above list may cause nonrecoverable errors. Clearing

status bits may cause a PTE to have wrong status bits in general, but is harm­

less in the specific cases described in the next section.

2.4.2.1. Supporting a single-level store

This includes both paging and memory mapped file 1/0. The operations

that change PTEs are paging in, paging out, selecting candidates for paging out,

creating a virtual address space (VAS), and deleting a VAS.

For paging in, the operating system allocates a new page, reads it from the

backing store if necessary, and validates it. For paging out, the system invali­

dates a page (probably reprotects it to read-only first), writes it to the backing

store if it is dirty, and clears the dirty bit. Only the first step of paging out may

cause nonrecoverable errors. Clearing the dirty bit is done when the page is

invalid or read-only, in which case the TLB may never write the dirty bit back to

the PTE.

For page replacement, the system periodically clears the referenced bit of

PTEs. If the bit is not set properly due to TLB inconsistency, the page replace­

ment algorithm may make suboptimal decisions, but no nonrecoverable damage

may occur. If the hardware has no referenced bits (e.g., the VAX), the system

emulates them by invalidating the page [LeL82]. Although in general invalidat­

ing a page is dangerous, it is harmless in this particular case. The page is actu­

ally "valid" even though the PTE has been invalidated. Therefore, accessing a

page using such a stale TLB entry will get to the correct page.

Creating a VAS or mapping a file to memory does not update PTEs that

were originally valid. Deleting a VAS or unmapping a file is equivalent to a

16

sequence of paging out operations.

2.4.2.2. Moving data between virtual address spaces

An operating system moves data between VASs either by copying or by VM

remapping. Most systems copy data indirectly, i.e., from a source VAS to a ker­

nel buffer, then to a destination VAS. Direct copying is desirable when the size

of data is large. To do so, the operating system maps the buffer from one VAS to

another, copies data, and unmaps the buffer again. Mapping is done by validat­

ing pages in the buffer, and unmapping is done by invalidating them. If virtual

address synonyms is not desirable, the operating system invalidates pages in the

original VAS before mapping them into another VAS.

VM Remapping (moving physical page numbers between PTEs) eliminates

the need for copying. This is usually done in two ways: (1) unmapping pages

from the source VAS and mapping them to the destination VAS, and (2) mapping

pages in copy-on-write8 mode in both VASs. Basic PTE updates for VM remap­

ping include validating a page, invalidating a page, and reprotecting a page to

read-only.

Sometimes the hardware only allows I/0 in a limited range of virtual

addresses, e.g., the DVMA area of Sun 3 workstations [SSS85]. Sun UNIX

moves data between I/0 buffers and the DVMA area by remapping. Again, the

relevant primitives are validating a page, and invalidating it later.

2.4.2.3. Supporting database functions

Some database systems use VM techniques to implement transaction sys­

tems [ChM88, Sto85]. In IBM's 801 system, the data manager maps file records

to virtual memory pages. When a record is not being updated, its data page is

protected as invalid or read-only. The data manager detects the beginning of a

transaction by a page fault on the first reference or write to the record. It then

takes the necessary actions, such as logging the record, validating the data page,

and resuming the faulting process. It reprotects the page again when the tran­

saction commits.

VM techniques are also used to speed up crash recovery [Sul90]. The data

manager protects most pages either as invalid or read-only. This simplifies

crash recovery because a wildly running process will not destroy a page that is

not writable.

The basic PTE updates used in the above two cases are validating a page,

invalidating a page, reprotecting a page to read-only, and reprotecting a page to

read-write.

1 Pages are mapped as read-only in both V ASs. A write acceu to such a page causes a page fault. The

page fault handler allocates a new page, copies the page, and maps the new page in read/write mode [BBM72].

Chapter 3

Software TLB Synchronization Algorithms

This chapter presents software TLB synchronization algorithms; Section 6.2
reviews hardware solutions and discusses their limitations. Section 3.1 first
defines the semantics of consistency. Section 3.2 then gives a set of algorithms
for various consistency semantics and TLB parameters (see Section 2.1.2).
Finally, Section 3.3 discusses issues such as disabling interrupts, deadlocking,
and hatching operations together.

We focus on software algorithms that reduce the access rights to a page
without causing the TLB inconsistency problem. Besides reducing access rights,
the operating system may change a PTE in other ways. They are not discussed
here because they do not cause nonrecoverable errors (see Section 2.4.2).
Chapter 5 will further discuss whether we can tolerate TLB inconsistency even
when reducing access rights.

3.1. Semantics of Consistency

The algorithms in this chapter "consistently" reduce the access rights of a
PTE from high_rights to low_rights (including invalidating it). Below, we
assume that an algorithm starts at time t 0 , reduces the access rights of the PTE
at t h and ends at t 2.

The term "consistent" has two types of semantics: (1) always-consistent, and
(2) consistent-when-done. The first one guarantees that after t h the page will
only be accessed using low_rights, and the PTE will not be overwritten as a
result of setting status bits. The second one provides the same guarantee, but
only after t 2. Between t 1 and t 2 (the shaded area in Figure 3.1), the second one
allows the page to be accessed by any processors using either high_rights or
low_rights. It also allows the access rights in the PTE to be overwritten with
high_rights, as long as the rights are changed back before t 2.

The first type of semantics is very strong, but often unnecessary. An
operating system executes an algorithm as a single logical step. It considers the
access rights of the page reduced only after it finishes that logical step. In other
words, it can avoid taking any action on the page, e.g., recycling it, before the
algorithm finishes. Therefore, it is logically correct, while the algorithm is in
progress, to access the page using high_rights by any processor even after the
PTE has been changed. We still consider this type of semantics here for com­
parison.

In addition to consistency semantics, an algorithm is either synchronous or
asynchronous. A call to a synchronous algorithm returns after it is completed,

17

The two ~s of semantics
differ In this interval

s

18

PrE contains
hi~h_rights

no memory references
use high_rig~ts

"
,

----------~------------~------~-~~~-----+--------~~Ti~

to
algorithm

starts

tl
PrE is changed

to low _rights

t2
algorithm

ends

Fipre 3.1. Consistency semantics. Between t 1 and t 2 , the page can be ac­

cessed using high_rights under the consistent-when-done semantics, but cannot

under the always-consistent.

whereas a call to an asynchronous one may return earlier. The caller of an algo­

rithm may have to wait because the algorithm usually involves many processors.

The idling time of the caller can be reduced if it returns earlier. In the following

discussion, an algorithm is synchronous unless explicitly specified as asynchro­
nous.

3.2. Algorithms for Updating a Page Table Entry Consistently

TLB synchronization algorithms vary with consistency semantics and TLB

characteristics. We first summarize the algorithms, then present four basic algo­

rithms, and finally show variants of the basic ones.

3.2.1. Overview

Updating a PTE requires two operations: (1) changing the PTE, and (2)

flushing the corresponding TLB entries. The order of execution of these opera­

tions is an important issue. In general, if (1) is done first, the newly updated

PTE may be overwritten (see Figure 2.2); if (2) is done first, a processor may

reload the old PTE into its TLB after having flushed the TLB.

Section 3.2.2 presents four basic algorithms that differ mainly in the order

of execution of the above two operations. Algorithm PTE-first changes the PTE

first; it works only for machines that set status bits atomically. Algorithm TLB­

first flushes the TLB entries first; it works only for machines that load TLB

entries via software. Algorithm 2-phase and optimistic work for machines that

have neither of the above properties.

19

Section 3.2.3 shows variants of the basic algorithms. Algorithm PTE-first',

TLB-firs(, and optimistic' are asynchronous versions of the basic ones. Algo­

rithm 2-phase has no asynchronous version. Algorithms PTE-firs(', TLB-first",

optimistic" are for hardware that allows a processor to flush the TLB on other
processors. The last three algorithms involve only one processor, so the notion of

asynchrony does not exist for them.

Table 3.1 summarizes the above algorithms, and, for each one, lists the con­

sistency semantics and the applicable hardware. Terms related to TLB's, e.g.,

"atomically", were defined in Section 2.1.2.

All algorithms presented in this chapter assume that TLB's are initially

consistent. In other words, when an algorithm starts, TLB's are not in a state

that may cause nonrecoverable errors, as listed in Table 2.2. This assumption

holds if the page table is always updated using the algorithms presented here.

Further, we assume that absence of hardware failures, such as crashes and

losses of interprocessor interrupts.

Pseudocode are used to describe algorithms. They omit low-level details,

e.g., mutual exclusion, to make ideas clear; some of such details are discussed in

Table 3.1. Summary of algorithms for solving TLB inconsistency.

algorithms consistency for what types of TLB
semantics (see Section 2.1.2)

PrE-first consistent when done status bits set atomically

TLB-first always consistent TLB's loaded by software

2-phase always consistent any

optimistic consistent when done any

PrE-first' consistent when done status bits set atomically
asynchronous

TLB-first' always consistent TLB's loaded by software
asynchronous

optimistic' consistent when done
asynchronous

any

PrE-first" consistent when done
TLB's flushed by other processors, and
status bits set atomically

TLB-first" always consistent
TLB's flushed by other processors, and
TLB's loaded by software

optimistic" consistent when done TLB's flushed by other processors

Section 3.3. Also, the pseudocodes use the following notations:

PTE : The PrE to be updated.
new_PTE: The target value to be written to PTE.
old_PTE: The old value of PTE.
hot_TLBEs : TLB entries corresponding to PTE .

20

requester: The processor that starts the algorithm. Usually, it sends
interprocessor requests to other processors.

replier: A processor that responds to an interprocessor request.
target_set The set of processors that contain hot_TLBEs.

3.2.2. Basic algorithms

Algorithm PTE-first updates the PTE first, then flushes the corresponding

TLB entries. It works only if the newly updated PrE can never be overwritten

as a result of setting status bits (see Section 2.2 and Figure 2.2). This condition

holds if the status bits are set atomically. This algorithm provides the

consistent-when-done semantics, because TLB entries may still contain

high_rights after the PTE has been changed.

I* PTE-first *I
Requester ()
{

PTE = new_PTE;
if (requester in target_set)

flush hot_TLBEs locally;
for each processor in (target_set - requester)

send an interprocessor request;
I* see Section 3.3.2 *I

for each processor in (target_set - requester)
wait for an acknowledgement;

Replier ()
{

flush hot TLBEs locally;
acknowledge;

Algorithm TLB-first flushes TLB entries before updating the PTE. It works

only if TLB entries are loaded via software traps. Otherwise, the hardware may

load old_PTE into a TLB after the algorithm has flushed it. It provides the

always-consistent semantics, because the PTE is changed after all old TLB

entries have been flushed.

I* TLB-first *I
Requester ()

changing_PTE_flag = true;
tentative PTE = new PTE; - -
if (requester in target_set)

flush hot_TLBEs locally;
for each processor in (target_set - requester)

send an interprocessor request;
/* see Section 3.3.2 */

for each processor in (target_set - requester)
wait for an acknowledgement;

PTE = new PTE;
changing_PTE_flag = false;

Replier ()
{

flush hot TLBEs locally;
acknowledge;

Load_TLB_trap_handler()
{

if (changing_PTE_flag)
load tentative PTE into TLB;

else
load PTE into TLB;

21

Algorithm 2-phase works for any combination of TLB parameters, and sup­
ports the always-consistent semantics. This algorithm is used in Mach [BRG89];
Figure 3.2 illustrates it. To ensure that the newly updated PTE will not be
overwritten as a result of setting status bits, the algorithm stalls all processor
that may access the page. In the first phase, the algorithm flushes all
hot_TLBEs, and stops all active processors except the requester itself. In the
second phase, it updates the PTE and then resumes all stopped processors. Both
the requester and replier have to block (see the shaded intervals in Figure 3.2).
Furthermore, they have to wait for the slowest processor. The blocking time
could be long, especially when there is a replier that disables interrupts.

/* 2-phase */
Requester()
{

if (requester in target_set)
flush hot_TLBEs locally;

for each processor in (target_set - requester)

send an interprocessor request;
/* see Section 3.3.2 */

phase I

Requester
T'ming

algorithm starts
flush local TLB

interrupt repliers

wait for acks

all acks received ----------- .. --

phase II update PTE
signal repliers

algorithm ends

22

interrupted

acknowledge

wait for signal

sigqal received
flush local TLB
return from interrupt

Figure 3.2. The 2-phase aleorithm. Processors block in the shaded inter­

vals. Every processor must wait for the slowest replier.

for each processor in (target_set - starter)

wait for an acknowledgement;

PTE - new_PTE;
for each processor in (target_set - starter)

send a continuing signal;

Replier()
{

acknowledge;
wait for the continuing signal;

flush hot TLBEs locally;

Algorithm optimistic (Figure 3.3) is intended to avoid the blocking of

repliers. It proceeds in the same way as algorithm PTE-first, even when status

bits are not set atomically. Therefore, the newly updated PrE may be overwrit­

ten as a result of setting status bits. However, the algorithm can detect this

and, when necessary, repeat the updating. It provides the consistent-when-done

• Ill

23

semantics, which allows the PTE to be overwritten while the algorithm is in pro­
gress.

The idea of this algorithm is similar to that of optimistic currency control in

database systems [BeG81, BHG87]. It does not employ a complex mechanism, as
in algorithm 2-phase, for a problem that happens only rarely. Instead, it
proceeds as if the problem does not exist, and fixes it when it does happen. Its
performance is close to that of algorithm PTE-first if the probability that a PTE
is overwritten is low.

The requester code shown below contains a loop, which may make the
worst-case time unbounded. This loop can be easily removed, if desirable, by
executing the 2-phase algorithm when the test fails. However, this has little
effect on overall performance if the test fails rarely.

/* optimistic */
Requester()
{

Requester
Timing

algorithm starts
update PrE

flush local TLB
interrupt repliers

wait for acks

all acks received
verify PrE

algorithm ends

Repliers
Timing

One Round Only

interrupted

flush local TLB

acknowled~e te t
retUrn from In rrup

Figure 8.8. The optimistic algorithm. Only the requester blocks in the

shaded interval.

do {
PTE - new_PTE;
if (requester in target_set)

flush hot_TLBEs locally;
for each processor in (target_set - requester)

send an interprocessor request;
I* see Section 3.3.2 *I

for each processor in (target_set - requester)

wait for an acknowledgement;

while (PTE.access_rights != new_PTE.access_rights);

Repliers ()
{

flush hot TLBEs locally;
acknowledge;

3.2.3. Variants of basic algorithms

24

Algorithm PTE-firs(, TLB-first', and optimistic' are asynchronous versions

of the corresponding basic algorithms. Algorithm 2-phase has no asynchronous

version because the request cannot update the PTE until all repliers have ack­

nowledged. Since the modifications are similar for the three algorithms, only

algorithm optimistic' is shown here. The requester initializes a counter to the

number of repliers. Each replier, after flushing its TLB, decreases the counter

by one. The last replier signals the end of the algorithm.

I* optimistic' *I
Requester()
{

PTE = new_PTE;
if (requester in target_set)

flush hot_TLBEs locally;
count= sizeof (target_set- requester);

for each processor in (target_set - requester)

send an interprocessor request;

I* see Section 3.3.2 *I
I* do not wait here *I

Repliers ()
{

flush hot TLBEs locally;
count = count - 1;
if (count == 0)

if (PTE.access_rights
Requester();

else

!= new_PTE.access_rights)
I* repeat the algorithm *I

25

signal end of algorithm;

Algorithm PTE-first'', TLB-first'', and optimistic" are for hardware that

allows a processor to flush the TLBs of other processors. These algorithms can

be completed solely by one processor, so interprocessor requests are not neces­

sary. Algorithm 2-phase cannot take advantage of this hardware feature

because it requires that all active processors be stopped while the PTE is being

updated. Again, we only show optimistic" here for the sake of brevity.

I* optimistic" *I
Requester ()
{

do {
PTE - new PTE;
for each processor in (target_set)

flush hot TLBEs on that processor.

while (PTE.access_rights !- new_PTE.access_rights);

I* no replier code *I

3.3. Discussion

The section discusses some details that we omitted in presenting the above
algorithms.

3.3.1. Disabling interrupts

Interrupts, when not disabled, may affect the correctness of a TLB syn­

chronization algorithm. An interrupt handler may access the target page in the

middle of a TLB synchronization algorithm. This may affect the PTE and the

corresponding TLB entries, which are either being updated or being flushed.

Below, we will show that interrupts, if not disabled, affect the correctness only of

the 2-phase algorithm among the ten algorithms described above. In addition to

correctness, handling an interrupt slows down a processor, possibly delaying

every processor involved in a TLB synchronization algorithm.

The key idea of algorithm 2-phase is to stop accessing the target page on all

processors until the TLB entries have been flushed on that processor, and the

PTE has been updated. Therefore, the algorithm must disable any interrupt

that may cause the target page to be accessed.

Algorithm PTE-first and its variants are used when status bits are set

atomically. Therefore, accessing the target page cannot destroy the newly

updated PTE. Furthermore, accessing the page may load only new_PTE into a

TLB because the PTE has been updated at the beginning. Hence, interrupts are

• I

26

not a problem for them.

Algorithm TLB-first and its variants are used when TLB entries are loaded
by software. Hence accessing the target page may load only new _PTE into a
TLB. The PTE is updated when no TLB's contains old_PTE, so the new PTE
cannot be overwritten by old_PTE due to accessing the target page. Again,

accessing the target page in the middle of these algorithms causes no problems.

In algorithm optimistic and its variants, servicing an interrupt may
overwrite the newly updated PTE, or load old_PTE into a TLB if the PTE has

already been overwritten. However, these do not violate the consistent-when­
done semantics, and can be detected and fixed before the algorithm terminates.

3.3.2. Interprocessor requests and hatching

An interprocessor request is carried out in two steps: preparing the request
in main memory, and optionally notifying the replier. The first step is typically
done by enqueueing the request to a per-processor queue. The second step is
done by issuing an interprocessor interrupt. Acknowledging a request is easier.
The replier sets a shared variable, and the requester spins on it.

An interprocessor interrupt is necessary only when the response time of the
request is important, for example, when the requester blocks for the ack­
nowledgement of the request. It is potentially expensive because the interrupt
may not be handled immediately if the replier has interrupts masked. This will

make the requester wait longer for an acknowledgement, and increase the total
overhead.

On the other hand, a processor does not have to be notified for every
request. It can check its request queue and execute the requests at a time that
is convenient to it, such as on a context switch or on a clock interrupt. This

saves the overhead of servicing an interrupt for each request. Additionally, this
has the effect of hatching requests together, and can further reduce the average
overhead per request. Algorithm PTE-firs(, TLB-firs(, and optimistic', which

are already asynchronous, may take advantage of this feature.

Some machines, such as MIPS [MMM86, TBJ88], allow the TLB to contain
entries for multiple virtual address spaces (VAS) at the same time. However, a

TLB entry may never be used until the the processor switches to the VAS con­
taining it. Therefore, all algorithms that issue interprocessor requests should be
modified for these machines as follow:

(1) Still enqueue an interprocessor request to every processor in
target_set.

(2) Interrupt only processors running in the VAS that contains PTE.

{3) Before switching to a VAS, finish processing all requests for that
VAS.

27

3.3.3. Deadlocking

Deadlocking is a problem only for algorithm 2-phase, which must disable
interrupts during the algorithm. In this algorithm, the requester sends an inter­
processor request to all repliers and waits for an acknowledgement from each
one. Since the algorithm disables interrupts, deadlocks may happen. For exam­
ple, a deadlock happens when two processors both enter the requester code, dis­
able interrupts, interrupt the other one, and wait for an acknowledgement.

The deadlocking problem can be solved by not waiting for the acknowledge­
ment of a request, but waiting for the replier to start executing the algorithm
(possibly due to another request). The requests for a processor are put in a
queue in main memory, and the processor will finish all requests before leaving
the algorithm. The problem can also be solved by checking the request queue
and servicing requests while waiting for acknowledgements. Black et al. and
Rosenburg discussed more on the deadlocking problem [BRG89, Ros89].

Chapter 4

The Performance of
TLB Synchronization Algorithms

This chapter evaluates the performance of the TLB synchronization algo­

rithms described in Chapter 3. The goals are (1) to compare the performance of

different algorithms, and (2) to see whether the performance of these algorithms

scales well with the number of processors and with the rate ofTLB synchroniza­

tion. Section 4.1 describes the performance model, assumptions, parameters,

and measures. Section 4.2 analyzes the algorithms using an iterative method.

Section 4.3 verifies the analysis with simulation. Section 4.4 shows the impor­

tant performance results. Section 4.5 concludes this chapter and suggests the

need for tolerating TLB inconsistency, which is the theme of Chapter 5.

4.1. The Performance Model

The model we use for performance analysis (Section 4.2) and simulation

(Section 4.3) consists of N identical processors running independently except for

the interactions due to TLB synchronization. Each one services three classes of

events:
(1) requester events, which initiate new TLB synchronization opera­

tions,

(2) replier events, which respond to TLB synchronization operations ini­

tiated by other processors, and

(3) interrupt-disabling events, which disable interrupts for reasons

other than TLB synchronization.

We consider a processor idle when it is not executing these events. Regular jobs,

e.g., user programs, are preempted by these three classes of events!, and are not

of interest here.

4.1.1. Event arrival and execution

Requester events are generated by a processor when it remaps pages. We

assume that a processor does not remap pages while it is busy with TLB syn­

chronization, or while it is servicing an interrupt-disabling event. Therefore,

each processor is a closed system in terms of requester events. This assumption

is realistic, particularly when the system is saturated, but complicates the

1 Except for asynchronous algorithms; see Section 4.2.3

28

29

analysis2.

Replier events are triggered by requester events executed on other proces­

sors. Each TLB synchronization operation involves M processors, where M is a

constant. A requester randomly selects M -1 repliers and causes for each one a

replier event. Replier events are delivered to repliers by interprocessor inter­

rupts. The interaction between requesters and repliers varies with the algo­

rithms to be evaluated.

Interrupt-disabling events correspond to clock interrupts, 1/0 interrupts,

traps, critical sections, etc. We assume that their arrival is independent of the

state of the system. In other words, interrupt-disabling events (e.g., a clock

interrupt) may arrive at a processor even while it is busy with TLB synchroniza­

tion.

The service of events is nonpreemptive. If an event cannot be serviced

immediately, it will be queued and serviced eventually. Events in the same class

are serviced in FIFO order. Events in different classes are serviced on a priority

basis. Both requester events or replier events have a higher priority than

interrupt-disabling events. Since a requester event may never arrive when there

are replier events pending (because of the closed system assumption described

above), differences in priority between requester events and replier event are

unimportant.

4.1.2. Interarrival and service times

The interarrival times and service times of events are assumed to be

independent random variables. For tractability, we also assume that all of them

are exponentially distributed. The following list summarizes their mean values:

1 -·
A-t"
!.
~·

mean time for each processor to generate a requester event

mean interarrival time of interrupt-disabling events on each pro-

cessor

Xreq
1
+{M -1)Xreq,: mean amount of computation of requester events

(excluding blocking time)

Xreply: mean amount of computation of replier events (excluding blocking

time)

Xd : mean service time of interrupt-disabling events

Xi: mean overhead to dispatch an interrupt

The mean service time of requester events has multiple components and depends

on M -1. For simplicity, we still assume that the service time as a whole is

exponentially distributed, though this may not be true in practice. Further, for

2 Contrarily, others often assume independent request arrivals in the analysis of synchronization and up­

dating of replicated data [Gar81, Lee80].

30

convenience, Pd denotes ~Xd.

4.1.3. Algorithm-specific parameters

There are two algorithm-specific assumptions. For optimistic algorithms,

during each round of the algorithm, the probability that a processor overwrites a
PTE as a result of setting the dirty or referenced bit is p 0• For asynchronous

algorithms, replier events do not preempt user programs. Instead, a processor

checks its queue of replier events after executing user programs for every time

slice of Xi seconds. (Xi is a constant in this model.)

4.1.4. Performance measures

From the solution of the model, we will obtain the following performance

measures.
(1) CPU overhead: the mean percentage of total CPU time spent in TLB

synchronization.
(2) Latency: the mean delay between the start and the completion of a

TLB synchronization algorithm.

(3) Throughput: the mean number of TLB synchronization operations
completed per processor per second.

(4) Space overhead: the mean number of pages frozen per processor due
to TLB synchronization. A physical page cannot be reused for other
purposes before all TLB synchronization operations involving it are
completed.

4.2. Performance Analysis

This section analyzes three TLB synchronization algorithms: the 2-phase

algorithms, the optimistic-synch algorithm, and the optimistic-asynch algorithm.

The first two ones are the same as those described in Section 3.2.2. The third

one differs from the optimistic-synch algorithm in two ways: (1) the requester

does not block, and (2) interprocessor requests are hatched and checked in the

background (see Section 3.3.2).

The performance of other algorithms listed in Chapter 3 can be analyzed

using similar methods, or can be estimated using the performance results

obtained for these three algorithms. For example, by setting p 0 to zero, the

optimistic-synch algorithm reduces to an one-round algorithm, and its perfor­

mance is similar to that of the PTE-first or TLB-first algorithm. The optimistic­

asynch algorithm does not involve interprocessor interrupts. By further setting

Xnply to zero, its CPU overhead is similar to that of the PrE-first" or TLB-first"

algorithm.

4.2.1. The 2-phase algorithm

We use an iterative method to obtain approximate performance results of

the 2-phase algorithm. We do not analyze the model as a queueing network,

31

because in this algorithm processors block on each other, making a product form

queueing network solution difficult. Section 4.2.1.1 outlines our method. Sec­

tion 4.2.1.2 and Section 4.2.1.3 derive equations. Section 4.2.1.4 summarizes the

method by giving a step-by-step procedure.

4.2.1.1. Method of analysis

Our technique for analyzing the performance of the 2-phase algorithm is

iterative. In each iteration, we assume that the algorithm's CPU overhead, Pt, is

known. Using Pt, we derive some performance measures, such as the ack­

nowledgement time of an operation, the synchronization time of an operation,

and the duration of busy periods. We then recompute the CPU overhead, Pt'·

This process is repeated until the difference between Pt' and Pt is negligible.

For tractability, we make two simplifications during the calculations. First,

we assume that different processors acknowledge a TLB synchronization request

independently. Second, although we adjust the arrival rates of requester and

replier events using Pt and Pd (see the closed system assumption in Section

4.1.1), we assume that the arrivals are independent processes. Furthermore, for

one performance measure, we only calculate its bounds, because its exact solu­

tion is too complicated to find. Therefore, the results of this analysis are approx­

imate bounds. In normal operating conditions, these bounds are close to each

other, and fairly close also to simulation results (Section 4.3).

4.2.1.2. Acknowledgement and synchronization time

In the synchronization phase, the requesting processor interrupts M -1

replying processors, and waits until all of them have entered the 2-phase algo­

rithm, i.e., have stopped accessing the target page. We assume that a replying

processor sets a flag to indicate that it is executing the 2-phase algorithm

immediately after the interprocessor interrupt has been dispatched. We define

acknowledgement time as the time it takes for a replying processor to turn on

this flag after being interrupted. For each replying processor, the acknowledge­

ment time depends on its state when it is interrupted. Possible states are:

(81) the processor is already executing the 2-phase algorithm due to other

TLB operations,

(82) the processor is not executing the 2-phase algorithm, and interproces­

sor interrupts are enabled, and

(83) the processor is in the middle of an interrupt disabling event.

Let ack (t) denote the pdf (probability density function) of acknowledgment time,

and ack (t I C) denote the pdf of acknowledgment time under condition C. For

state 8 1, the acknowledgement time is zero, so ack (t I 8 1) = O(t), a unit impulse

function at t =0. For state 8 2, the acknowledgement time is Xi' the fixed over­

head of dispatching an interprocessor interrupt. Hence, ack (t I 8 2) = &.,t-X).

For state 8 3, the acknowledgement time is Xi plus the residual execution time of

an interrupt disabling event. The execution time of interrupt disabling events is

exponentially distributed with mean Xd. Since this distribution is memoryless,

• I

32

the residual execution has the same distribution, i.e.,

ack (t I S 3) = ;d e -<t-X,l!X.u (t-X;), where u (t-X;) is a unit step function at X,.

Combining the three ack (t I C)'s, we have

ack (t) = Prob[S 1] ack (t I S 1) + Prob[S 2] ack (t I S 2) + Prob[S 3] ack (t I S 3)

= Pt li(t) + (1 - Pd - Pt)li(t -X,)+ Pd ;d e -<t-X,l!X. u (t -X;)

Pt 0(0) if t =()

0 ifO<t<Xi

= (1 - Pd - Pt) 0(0) ift=Xi
(4.1)

'A.ue -<t-XJI~ ift >Xi

Integrating Eq. (4.1) from 0 tot, we have the PDF (probability distribution func­
tion) of acknowledgement time,

ACK(t) = PtU (t) + (1- Pt - Pde-<t-X,>I~) u (t-Xi)

{

Pt if OSt <Xi

= 1- Pde-<t-X,>I~ ift~i
(4.2)

We define synchronization time, 8, the time it takes for all replying processors to
acknowledge. In other words, 8 = max(ai; i=1, ... ,M-1), where ai is the ack­
nowledgement time of the i th replying processor. Let s (t) and S (t) denote the
pdf and PDF of 8 respectively. In Section 4.1, we assumed that processors run
independently, except for the interaction due to TLB synchronization. Hence it
is reasonable to treat the 8j 's as independent in calculating S (t):

S (t) = Prob[max(ai; i =1, ... , M -1) s t]

= Prob[a1 s t] Prob[a2 s t] · · · Prob[aM _1 s t]

= [ACK(t)yV-1

Except for the two discontinuous points at t=O and t=Xt, we have

s(t)= :tS(t) = (M-l)[ACK(t)fl-2ack(t).

(4.3)

(4.4)

s (t) at t =0 and t =Xi are calculated as follows. The synchronization time is zero
only when all replying processors are already in the 2-phase algorithm. The pro­
bability of this is pfl-1. The synchronization time is xi when no replying proces­
sor is executing an interrupt disabling event, and at least one replying processor
is not executing the 2-phase algorithm. The probability of this is
(1- Pd f!- 1 - PtM-l. Therefore we have

s(t) =

pf!-1 0(0)

0

[(1- Pd fl-1 - pf'-1] 0<0)

ift=O
ifO<t<Xi

ift=Xi

The mean synchronization time, SYNC, is obtained by integrating s(t)t,
00

SYNC = Prob[s =Xd Xi+ J (M -1)[ACK(t)f'-2ack (t) t dt
xi

4.2.1.3. Busy periods

33

(4.5)

(4.6)

This section uses mean-value analysis to calculate the duration of busy
periods, which will be used to compute the latency of a TLB operation, and the
CPU overhead of the algorithm. A processor is said to be busy when it is execut­
ing the 2-phase algorithm. A busy period is a continuous period during which a
processor is busy. It may consist of several TLB operations in a row, because
replier events may still come in while a processor is busy.

We divide busy periods into two types according to the two classes of TLB
synchronization events described in Section 4.1. A requester busy period is a
busy period starting with a requester event; a replier busy period is a period
starting with a replier event.

The following notation is used in the calculations. A.,.eq and A.,.eply are
respectively the mean number of requester and replier events per processor per
second. T req is the mean duration of requester events. T nply is the ID;ean dura­
tion of replier events that initiate a replier busy period; whereas Treply is the
duration of replier events that arrive in the middle of a busy period. Breq and
Breply are the mean duration of requester and replier busy periods respectively.
Nreq is the mean number of replier events executed during Breq. Nreply is the
mean number of replier events executed during Bnply other than the one that
starts the period.

Section 4.1.2 assumes that the mean amounts of computation of a requester
and a replier event are Xreq

1
+{M -1)Xreqa and Xreply respectively. The execution of

an event is divided into several stages by interprocessor interactions, such as
interrupts and acknowledgements (see Figure 3.2). For tractability, in our
analysis, we assume that all the computation of an event is carried out in a sin­
gle stage, as showned in Figure 4.1.

Requester
Timing

algorithm starts {

Xreq 1 +(M -1)Xreq 1

interrupt repliers

SYNC

all acks received
signal repliers and end

> T req

Repliers
Timing

,

T reply <

~
interrupted

kt accepted, algorithm starts
X·
ac'know ledge

}

signal received

X reply

Figure 4.1. A simplified timing diagram of the 2-phase algorithm. I is

the initial delay due to other interrupt-disabling events; Xi is the overhead of

dispatching an interrupt.

34

By assumption (Section 4.1), a processor generates TLB requests only when

it is not busy and not executing an interrupt disabling event. Hence

l..,.eq = (1- Pd - Pt) At (4.7)

There are N processors generating requester events, and each requester event

causes M -1 replier events among N processors. Thus

M-1
~ply = N A.,.eq "}/ = ~q (M -1) (4.8)

By definition,
(4.9)

Treq is the mean amount of computation of a requester event plus synchroniza­

tion time,
(4.10)

As stated in Section 4.2.1.1, we assume that the arrival of replier events is an

independent process for tractability. This is not generally true for a closed

35

system, but is a good approximation when the mean interarrival time is much
larger than the mean service time. Under this assumption, the mean number of

replier events arrived during a period is the mean duration of that period times
the arrival rate. So we have

N rrq = 'A-reply Brrq (4.11)

Substituting Eq. (4.11) into (4.9), we have

Trrq
Brrq = ,

1 - /..,.~ply Tr~ply
(4.12)

Again by definition,

Breply = Treply +Nrrply T~ply (4.13)

The calculations for Tr~ply and Nr~ply are slightly different from that forT req and
Nreq, mainly because of the initial delay due to disabling interrupts. For a

replier event that starts a busy period, the mean initial delay equals the proba­
bility that a processor is in an interrupt disabling event times the mean residual
time of that event:

(4.14)

As shown in Figure 4.1, the replier is not executing the 2-phase algorithm during

the initial delay. Hence, this delay is not charged toT reply, and we have

Treply =SYNC -I +Xreply (4.15)

On the other hand, all replier events that arrive during the initial delay I are
included in the busy period. Similarly to Eq. (4.11), we have

N reply = (I + Breply) 'A-reply

Substituting Eq. (4.16) into (4.13), we have

(4.16)

T reply + I A,.eply T :.eply
Breply = , (4.17)

1 - /..,.~ply T reply

We now recompute the CPU overhead. For each processor, there are 'A,.eq reques­

ter events and Anply replier events per second. The number of requester busy

periods per second is simply ')..,.~. The number of replier busy periods per

second, on the other hand, is less than A,.eply. This is because 'A,.eqNreq replier
events are executed in requester busy periods, and each replier busy periods has

Nreply + 1 replier events (the extra one is for the event that starts the busy
period). Therefore,

B
}.,.~ply - 'A,.eq N req

Pt ' = Breq Anq + reply N
1 + reply

1 - /...,.~q Breq

= Breq Areq + Breply A,.eply 1 + 1 (B +I)
""reply reply

(4.18)

36

So far the only unknown is T ~ply, whose upper and lower bounds are estimated
below. Its exact solution is difficult to find because of the concurrent nature of
the 2-phase algorithm. In this algorithm, a processor may scan the replier event
queue while waiting for synchronization. Therefore, a processor may effectively
handle multiple TLB operations in parallel (although a processor cannot process
for multiple operations at the same time, it can "wait" for them concurrently). In
the best case, a replier event may be completely overlapped with the synchroni­
zation time of the event that starts a busy period. In the worst case, all events of
a busy period are serialized, i.e., one arrives right at the end of the previous one.
Hence the lower and upper bounds ofT~ply are

0 ~ T~ply ~ Xnply +SYNC (4.19)

T ;eply appears in the form of 1- ~ply T ;eply in Eq. (4.12) and Eq. (4.17). Its effect
is insignificant if A,.,p~.y(Xnply+SYNC) is much smaller than 1.
~ply <X reply +SYNC), as a rough approximation, is the CPU overhead for han­
dling replier events, and should be low for the system to be usable. In other
words, T ;eply has a significant effect only when the system is saturated, in which
case a precise performance measure is less important.

4.2.1.4. The complete procedure

The following procedure summarizes the analysis in Sections 4. 2.1.2 and
4.2.1.3:

Pl. Assign an initial value, say, 0.1, to Pt.

P2. Compute SYNC by Eq. (4.6).

P3. Compute 'A,.eq and ~ply by Eqs. (4.7) and (4.8); compute I by Eq.
(4.14); computeT req and Treply by Eqs. (4.10) and (4.15).

P4. Compute Breq and Breply by Eqs. (4.12) and (4.17).

P5. Compute pt' by Eq. (4.18). If pt'~1 or pt'~O, output "fail" and stop. If
I Pt 1

- Pt I ~ £, output "succeed" and stop.

P6. Assign Pt I to Pt , and go to P2.

We perform this procedure twice, once with T ;eply = 0 for lower bounds, and once
with T reply =Xnply+SYNC for upper bounds. This procedure terminates rapidly,
usually in less than 20 iterations. It converges in most cases. It fails only when
the given parameters represent an extremely high load. Under such conditions,
overestimating T ~ply may cause the computed Pt' to become greater than 1.

The performance measures listed in Section 4.1.4 can be immediately
obtained from the results of this procedure. The per-processor CPU overhead is
Pt. The per-processor throughput of TLB operations is 'A,.eq. The latency of a

TLB request is Bnq (not Treq because a call to the algorithm will not return until
the busy period ends). The per-processor space overhead is, by Little's formula
[Kle75], the arrival rate of requester events times the mean duration of a reques­

ter event, or A,.eq Treq pages.

37

4.2.2. The optimistic-synch algorithm

The technique for analyzing the performance of the optimistic-synch algo­

rithm is similar to that used in Section 4.2.1, except for the calculations of

arrival rates and acknowledgement time. Here, we consider the effect of failure

(i.e., p 0, defined in Section 4.1.3) in calculating arrival rates, and use a

nonpreemptive queueing model in calculating acknowledgement time.

The simplifications for tractability are also similar. We obtain approximate

results by assuming that (1) processors acknowledge independently, and (2) TLB

events obey Poisson arrival processes, though their arrival rates are adjusted

using Pt , Pd , p 0 , etc.

Finally, we use the same the terminology and notation as in Section 4.2.1,

unless otherwise stated.

4.2.2.1. Arrival rates

In the optimistic-synch algorithm, we break a TLB operation into a

sequence of rounds, each of which is a request-and-reply-by-all cycle as in the 2-

phase algorithm. We call each round of a requester event a primitive requester

event, and denote its duration as T :;q and its per-processor arrival rate as ~q.

A TLB operation may need more than one round because the algorithm may

fail at the end of a round. The probability that a processor overwrites a PTE as

a result of setting the dirty or referenced bit during each round is p 0• For each

TLB operation, M -1 other processors have the target page mapped and may

overwrite the target PTE (the one that initiates the operation never overwrites

the PTE). Therefore, the probability that a TLB operation fails at the end of a

round is

p = 1- (1-p 0f!-1 (4.20)

The mean number of rounds per TLB operation is

1+p +p2+p3+ ... = _1_ = 1
1-p (1-p 0f!-1

Eq. (4.7) is still valid for requester events. Dividing it by (1-p 0f!-1, we obtain

the arrival rate of primitive requester events:

'l 0 A.,.eq At
"Teq = (1 - Pofl_1 = (1- Pd - Pt) (1 - Pofl-l (4.21)

Similarly to Eq. (4.8), each round of a TLB operation generates M -1 replier

events. Hence

(4.22)

I

38

4.2.2.2. Acknowledgement and synchronization time

An acknowledgment serves a different purpose in the optimistic-synch algo­
rithm than in the 2-phase algorithm. In the 2-phase algorithm, acknowledge­
ments guarantee that repliers have stopped using the page being updated so
that the requester can safely change the page table entry. In the optimistic­
synch algorithm, acknowledgements indicate that repliers have completed their
work so that the requester can check whether the operation fails. Therefore, the
definition of acknowledgement time is different for the two algorithms. For the
optimistic-synch algorithm we define acknowledgement time as the time it takes
for a replier to finish a replier event after being interrupted for that event. Syn­
chronization time is still the maximum of M -1 acknowledgement times.

Several factors delay the acknowledgement of a replier event:

(1) The interrupt disabling event being executed, if any, must be
finished.

(2) The primitive requester event being processed, if any, must be exe­
cuted until it enters the synchronization stage. Before this stage,
the requester will not check incoming replier events.

(3) All replier events that have arrived before this event must be
finished.

Note that, in (2), the waiting time of a requester event does not affect the ack­
nowledgement time, because a processor can serve other replier events while
waiting for synchronization. This feature simplifies the analysis of acknowledge­
ment time greatly. First, we need not deal with "waiting in parallel" (see Section
4.2.1.3) because the waiting time is not counted at all. Second, we do not need
the total execution time of a requester event in order to calculate the delay
caused by it.

We represent this problem by a nonpreemptive queueing model. In the
model, each processor serves customers belonging to 3 priority groups, indexed
by p =1,2,3, where 3 is the highest priority. Replier events belong to priority
group 3, the highest one. Interrupt disabling events belong to priority group 1.

Customers of priority 2 are the first half of primitive requester events, i.e.,
request events without synchronization. The queueing discipline is nonpreemp­
tive priority, with FCFS service within a priority group. This queueing discip­
line effectively takes into account the three factors listed above, i.e., a customer
of priority group 3 must wait for the completion of any lower-priority customer
that is already in service, and for the completion of any same-priority customers
that arrived before it. Therefore, the acknowledgement time we want to find is
the priority-3 group's time in the system in this model.

Kleinrock gives the general solution for a P -priority system [Kle76]. He
assumes that, for each group p, the arrival process is Poisson with mean rate 1v,;
the mean service time is .iP; the Laplace transform of the service time is B;(s).
The Laplace transform of the priority-p group's waiting time is

39

where

p-1 ~
Bi.<s) = 'L ~Bt<s)

i=l £

And the Laplace transform for the priority-p group's system time is

s;<s) = w;<s)B;(s) (4.24)

In order to apply Eqs. (4.23) and (4.24), we assume in the calculation that the

arrivals of primitive requester events and replier events are Poisson processes

with the rates given in Eqs. (4.21) and (4.22). This assumption is not completely

true, but is a good approximation of reality, as we will see in Section 4.3.2. Let

Jlp denote the service rate of priority-p group. Then the parameters of the model

are:

Jl1 = 1 1 xd
Jl2 = 1 I <Xreq 1 + (M -1)Xreq~l.25)

Jl3 = 1 I Xreply

Note that Jl2 does not include the waiting time of a requester event, as explained

earlier. Also note that we do not include xi in Jl3 for simplicity. xi is needed

only when a replier event starts a busy period.

The Laplace transforms of service times are n;<s)=__}2_, for p =1,2,3,
S+Jlp

because service times are exponentially distributed (Section 4.1). In addition,

when P, the number of priorities, is 3, and p =3, 'AH=BH(s)=0, and, 'AL ='A1+~.
Substituting these into Eqs. (4.23) and (4.24), we have the Laplace transform of

the acknowledgement time:

where

~ J.La
c2=-

J.l2 J.La-A.a-J.l2

The pdf of acknowledgement time is the inverse of Eq. (4.26):

ack (t) = c 1J.l1e ;.L1t + c 2J.l2e ;.L,t + (1-c 1-c 2XJ.La-A.a)e -<~A.a>t

40

(4.26)

(4.27)

(4.28)

(4.29)

This is a hyper-exponential distribution. Note that c1=A.1/J,L1 and c 2=~/J.L2 when

J.l.a»A-3 , J.La»J.lh and J.La»J.l2. In other words, c 1 and c 2 are approximately the pro­
babilities that the server is serving a customer of priority 1 and 2 respectively.

Moreover, J.1.1e ;.Ltt and J.L# "1lll are exactly the residual service time densities of

customers in priority group 1 and 2, and (J.L:rA.a)e~A.,)t corresponds to the wait­

ing time density of an M/M/1 queue. Therefore, the three terms of ack (t)

approximately correspond to the three factors discussed at the beginning of this

section.

The PDF of the acknowledgement time is
t

ACK(t) = J ack (x)dx = 1 - c 1e ;.Lit - c :# ;.Ltt - (1-c 1-c 2)e -<~~>t
0

(4.30)

Eqs. (4.3) and (4.4) still hold for the optimistic-synch algorithm. Hence the mean

synchronization time for a primitive requester event is

-SYNC = f (M -1)[ACK(t)yV-2 ack (t) t dt
0

(4.31)

4.2.2.3. Busy periods

The analysis of busy periods is similar to that in Section 4.2.1.3, except for

the calculations of Trrq, T nply and I. For the mean duration of requester events,

Eq. (4.10) now holds for a single round, i.e.,

(4.32)

41

Since each requester event has on the average 1/(1-p 0yV-1 rounds, the mean

duration of requester events is

T = T~q = Xreq 1 +(M-t')XreqJ+SYNC

r~q (1-pof'-1 (1-pof'-1
(4.33)

The mean initial delay for a replier event now includes the residual service time

of interrupt disabling events as well as the residual service time of primitive

requester events:

I = PdXd + ~q [Xreq
1
+ (M -1)XreqJl2 (4.34)

The mean duration of a replier event that starts a busy period is the overhead of

dispatching an interrupt plus the execution time of the event:

Treply =Xi +Xreply (4.35)

Besides these, the equations for busy periods (Eqs. (4.12) and (4.17)) and CPU

overhead (Eq. (4.18)) are still valid.

The bounds of T~ply are also derived similarly. The only difference is that a

replier does not wait in the optimistic-synch algorithm. Hence the upper bound

ofT ;eply does not include SYNC:
(4.36)

Note that these bounds are much narrower than those in Eq. (4.19), because

SYNC is usually much larger than Xreply.

4.2.2.4. The complete procedure

The iterative procedure for analyzing the optimistic-synch algorithm is the

same as that for the 2-phase algorithm (Section 4.2.1.4), so it is not repeated

here. Note that some performance measures are now computed using different

equations: SYNC, /..w,.eply, I, Treq, and Tr~ply are calculated using Eqs. (4.31),

(4.22), (4.34), (4.33) and (4.35) respectively. Also, Eqs. (4.25), (4.27), (4.28),

(4.29), and (4.30) are needed for calculating SYNC.

Again, this proced~ is performed twice, once with Tr~ply = 0 for lower

bounds, and once with T reply =X reply for upper bounds. Its results immediately

give the performance measures we want to find, in the same way as in Section
4.2.1.4.

4.2.3. The optimistic-async algorithm

The analysis of the performance of the optimistic-async algorithm is much

easier than those presented in the previous sections. The CPU overhead is com­

puted using simple algebra; the latency is calculated using a non-priority queue­

ing model. Again, we used the notation and terminology defined in Sections

4.2.1 and 4.2.2.

• I

42

4.2.3.1. CPU overhead

The optimistic-async algorithm also carries out a TLB operation in one or
multiple rounds, but it differs from the optimistic-synch algorithm in three ways.
First, the processor that initiates the operation does not wait for the completion
of the operation. In other words, the CPU overhead of the algorithm does not
include the synchronization time as in other algorithms. This greatly simplifies
the analysis of the CPU overhead. Second, replier events are not executed via
interprocessor interrupts, but are examined and executed between slices of regu­
lar jobs. Hence, the overhead of dispatching an interrupt (Xi) is not included in
the overhead of a replier event. Third, at the end of a round, it is the last replier
instead of the requester that checks the results and repeats the operation in case
of failure. Hence, different rounds of a TLB operation may be initiated by dif­

ferent processors. However, as far as event rates are concerned, Eqs. (4.21) and
(4.22) are still valid for ~q and Areply.

Directly from input parameters, the mean overhead of a primitive requester
event and a replier event can be obtained as Xnq

1
+(M -1)X~ 1 and Xreply, respec­

tively. Multiplying them by their rates and summing up, we obtain the total
CPU overhead

At
Pt = (1- Pd - Pt) (-M-l [Xnq 1 + (M -1XXnq 1+Xnply)] (4.37)

1-PoT-

Solving Eq. (4.37) for Pt, we have

(1- Pd) At [Xreq
1
+ (M -1XXnq 1+Xnply)]

(4.38)

Note that we ignore the overhead of checking whether the replier event queue is
empty on every context switch.

4.2.3.2. Latency

For the optimistic-async algorithm, the latency of a TLB operation is
defined to be the time it takes to complete the operation (Section 4.1.4). A TLB
operation may consist of more than one rounds. We first compute the mean
latency of a round, then multiply the result by the mean number of rounds per
operation.

The mean latency of a round has two components: the overhead of the
requester <Xnq

1
+ (M -1)Xnq

1
), and the maximum delay of all repliers. Two major

factors affect the delay of a replier event. First, if the replier is executing a slice
of a job, it must finish the current time slice. Second, the other replier events
that arrived before this event must be finished first.

In Section 4.2.2.2, we considered two other factors, i.e., the execution of
interrupt disabling events and the execution TLB requester events. We ignore
them here for simplicity. This is reasonable because the durations of these

;

43

events are much shorter than a time slice. Furthermore, we assume, as in

UNIX, that the overhead of handling interrupts is charged to the current time
slice. Hence, these events affect job scheduling only when their execution
extends beyond the end of the current time slice.

We use a non-preemptive queueing model to find the time it takes to com­
plete a replier event. In the model, each processor serves customers of two prior­
ity classes. High-priority (p =2) customers correspond to replier events. Arrivals
follow a Poisson process with mean rate ~ = Anply ; the service time is exponen­
tially distributed with mean 1/J..l2 =Xnply· U>w-priority {p=1) customers
correspond to job slices. Their service time is a constant Xi; this arrival rate

satisfies !:.!._ + "-2 = 1. The equation for A.1 is a consequence of the assumption
Ill J.12

that the CPU is never idle (the CPU runs, say, the garbage collection job when it
is otherwise idle). With this model, the time it takes to complete a replier event
is simply the system time of high-priority customers.

Using the notation of Eq. (4.23), we have P=p=2, B 1(s)=e-aXi, B 2(s ~~'
s+~2

'A.L ='A.1, and A.H=B ii<s)=(). ~t D • (s) denote the Laplace transform for the comple­
tion time of a replier event. Then, by Eqs. (4.23) and (4.24),

D • (s) = 'A.l(1-e -s Xi) J.12

=

J..l2 s +J.12
s -~+~--

8 +J.12

(4.39)

The pdf of the completion time of a replier event, d(t), is the inverse ofEq. (4.39)

d(t) =
~. (1-e -{J.lrAt>t), if t ~j

)

! (1-e -{J.LrA.tlX1) e -{J.lrA.tXt -Xi)

X·)

(4.40)

Integrating Eq. (4.40) overt, we have the PDF of the completion time of a replier
event,

t 1-e -{~A.t)t

D(t) =
xi <J.L2-~JXi ,

1-e -{~A.t}Xj
1 _ e -{J.lrA.tXt -X1)

<~r~JXi '

(4.41)

• I

44

Eq. (4.4) is still true for the maximum of M -1 completion times. Hence, the
mean latency of one round of a TLB operation is

(4.42)

Since each TLB operation has on the average 1/(1-p0'f'-1 rounds, its mean
latency is

To
T req = (1 - p:'f'-1 (4.43)

This completes the analysis of the performance of the optimistic-async algo­
rithm. To summarize, the per-processor CPU overhead of this algorithm is Pt
(Eq. (4.38)), the latency is T req (Eq. (4.43)), the per-processor throughput of TLB
operations is ~ (Eq. (4.7)), and the per-processor space overhead is, again by
Little's formula [Kle75], ~q T req pages.

4.3. Simulation

To validate our analytic results, we simulate the performance of the three
TLB synchronization algorithms analyzed in Section 4.2. Particularly, we want
to see whether the iterative procedures (Sections 4.2.1.4 and 4.2.2.4) converge to
correct values, and whether the simplifications we made in the analysis are rea­
sonable.

Mistakes in performance analysis or simulation are hard to detect, because
they often cause no other symptoms but wrong performance numbers. Whereas
in building a real system, bugs cause the system to function incorrectly and are
hence easier to detect. We are confident in the correctness of our results only if

we can obtain similar results using completely different methods.

Below, we briefly describe the simulators, estimate their computation time,
and compare their results with those obtained by analysis.

4.3.1. The simulators

We built an event-driven simulator for each of the three algorithms. The
simulators use the model and assumptions in Section 4.1, but do not make the
extra simplifications we made in the analysis. Events are generated stochasti­
cally according to the workload assumptions in Section 4.1, and recursively as a
result of executing events. The simulators essentially implement the exact TLB
synchronization algorithms, i.e., they have code corresponding to every step of
the algorithms. The simulators maintain state information for each processor,
and execute code by changing the states of the processors. Events are executed
in the order of their simulated times. For each event, the simulators carry out
the algorithms, update simulated time, collect and output statistics, and gen­
erate more events if necessary.

45

We decoupled the simulators into two parts: commands of the BerkeLey
Interactive Statistics System (BLSS) [AbR88], and C programs (which are also
executed as BLSS commands). BLSS has a rich command set for data manipula­
tion and visualization. We used BLSS commands to generate datasets consisting
of raw input events. The C programs, which are engines driven by events, take
raw input data and produce raw output data. We again use BLSS commands to
extract statistics out of the raw output data, and to visualize the results. This
approach reduces the amount of programming, because we need not write C code
that deals with probability and data manipulation. Moreover, we can easily
change the workload and plot different graphs without modifying the C pro­
grams. Note that we did not use a standard simulation tool, such as GPSS
[BKP76, Sch74], SIMSCRIPT 11.5 [MKV87], SLAM [Pri86], INSIGHT [Rob83],
and SIMAN [Peg82]. In our problem, processors interact and synchronize with
each other. Moreover, we have to deal with details such as deadlock avoidance.
We felt that Cis more flexible and less restrictive in handling these issues.

The computation time of the simulators is estimated below. There are N
processors each generating TLB operations approximately at a rate At. Each

operation generates an event for M processors. Determining the next due event,
which is the earliest of all pending events, can be done either by scanning the
state of N processors, or by maintaining a sorted list of pending events. Both
methods take order O(N) time. Hence the computation time of the simulators is
of order 0 (N2MAt T), where T is the total simulated time. As a numeric exam­
ple, for the parameters given in Figure 4.2(a) and T = 2000 ms, the data point
corresponding to M=40 takes 137.7 seconds of CPU time on a VAX 8600 when
N =M, and 2275.4 seconds when N =4M. On the other hand, the analytic
methods need little computation, and, most importantly, the computation time is
more or less constant. It takes only about 20 ms of CPU time on a VAX 8600 to
generate the same data point using the analytic procedure described in Section
4.2.1.4.

4.3.2. Comparison of simulation and analytic results

We computed performance measures for a set of representative parameters
using both the simulation and analytic techniques. This section focuses on the
differences between analytic and simulation results; interpretations of the
results are deferred untilSection 4.4.

The performance measures compared are CPU overhead and latency; the

parameter values used are At= 25/sec., Au= 100/sec., Xd = 0.5 ms, Xreq 1 =Xi=

Xreq 1 = 0.04 ms Xnply = 0.04 ms, Xi = 25 ms, p 0 = 0.0002, and variable M. We

will present more performance measures (throughput and space overhead) using
the same parameter values in Section 4.4. Moreover, Section 4.4 plots results
using various parameters (mean arrival rates and mean service times in addi­
tion to M) as the X axis.

We verified our analytic results only for parameter values that we are
interested in. The total number of possible parameter values is infinite.

46

Moreover, simulation is computationally expensive (of order 0(N2MA.t T)), or

even infeasible, when N or A.t is large. Therefore, we did not compare all perfor­

mance measures for all possible parameter values.

4.3.2.1. The 2-phase algorithm

The analysis of the 2-phase algorithm made two additional simplifications

with respect to those made by the simulation. We assumed that processors ack­

nowledge TLB requests independently. In reality, processors are more or less

coordinated by the 2-phase algorithm. The algorithm causes them to stall and

resume at about the same time, and hence delays and synchronizes the execu­

tion of other events, e.g., interrupt disabling events. However, we believe that

the effect of this is insignificant because the duration of the algorithm is rela­

tively short.

We also assumed in the analysis that TLB events arrive independently of

the state of the system. In fact, all processors involved in the algorithm are tem­

porarily stalled and cannot generate new TLB events. Hence the number of pro­
cessors that can independently generate TLB events is at most N -M (total

number of processors minus the number of processors involved in each opera­

tion) when the algorithm is in progress. Nevertheless, the effect of N has been

eliminated in the analysis because of the above simplification. We examine this

here by simulating the algorithm with N=M and N=4M. Note that in Eqs.

(4.12) and (4.17), the arrival rate Areply appears in the expression 1- "-reply T ;eply·

Hence, the extreme case (i.e., Areply = 0, when no new TLB events can arrive dur­

in~ the algorithm) can be covered by the lower bounds, which are based on

T reply= 0.

Figure 4.2(a) shows the CPU overhead of the 2-phase algorithm. The lower

and upper bounds are reasonably close to each other, and agree fairly well with

the simulation results. Also, the effect of N is insignificant: the CPU overhead is

only slightly higher with N =4M than with N =M. Therefore, we conclude that

the simplifications we made are reasonable for calculating CPU overhead. In

fact, it is generally true that the mean utilization of a closed system is not very

sensitive to the approximations made in the analysis [Agr85, R.S83].

Figure 4.2(b) shows the latency of the 2-phase algorithm. The simulated

latencies for N =M and N =4M are pretty close, so the effect of N on latency is

also insignificant. The lower bounds, upper bounds and simulation results agree

well only when M < 20, which approximately corresponds to Pt < 20% according

to Figure 4.2(a). When M is larger, the lower bounds are still close to the simu­

lation results, but the upper bounds increase more rapidly. In other words, the

method we used to calculate the upper bounds works well only when the system

is far from saturation (i.e., the CPU overhead is low). This outcome justifies our

decision not to assume in the first place that TLB events are executed serially

(this is how the upper bounds were derived). Note that Lee and Garcia-Molina

have assumed this in evaluating the performance of distributed databases

[Gar81, Lee80]. Additionally, they have assumed that events are generated

(a) (b)

CPU overhead(% of total CPU time)
50 ····T····y-···;-···-r···-r····r-··-T·--T··--T··-·1 5.0

Latency (ms)

45 ----+--··t····+···+····j·--·-t····+···+····: -4fase-u 4.5
40 l:. ,.l ••••• ~-----~----~-----i.... ··---~----~ 4 0

l l l l ! l l l .·1!' '2phase-l ·

35 ·····i·····t····+···+···-t··-·t·-· ; ·:_~:·. ; ---·i 3.5

30 -···t····t-···1···-·t···--t···:- --~ ··t···t·····l

= :::::r::::r:r::r·:·. __ ::r:::r:::r::::r:::i
15 ····-r····r···:· -····r···r···-r···-r····r·--1

2.0

~: ::::t···;:.~~:::::~:::::r:::I::::r::::r:::r::J
1.0

0.5

0+-~~~--~~-P~--~._~

0 5 10 15 20 25 30 35 40 45 50
0.0+--t-....... __.,_,__..,..._,_......,...,....,_..;--t

0 5 10 15 20 25 30 35 40 45 50
Number of processors per operation (M) Number of processors per operation (M)

Figure 4.2. Simulation vs. analysis: the 2-phase algorithm. Parameters

are At = 25/sec., Au = 100/sec., Xd = 0.5 ms, and Xi= X1'f!q 1 = Xl'f!qa =
Xl'f!ply = 0. 04 ms. Solid lines are analytic bounds. Triangles are simulation
results for N =4 M. Squares are simulation results for N =M.

47

externally, i.e., their arrival rate does not decrease when the CPU is saturated;
this could make the estimation of latency even more inaccurate.

4.3.2.2. The optimistic-synch algorithm

Figures 4.3(a) and 4.3{b) show the CPU overhead and latency of the
optimistic-synch algorithm. For both performance measures there is no notice­
able difference among the upper bounds, the lower bounds, and the simulation
results. In addition, the effect of N is insignificant. We made similar
simplifications for analyzing the optimistic-synch algorithm as for the 2-phase
algorithm. The results are more accurate here because we have tighter bounds
(SYNC exists in Eq. (4.19) but not in (4.36)). We thus conclude that the analysis
for this algorithm yields accurate results, at least for the parameter values we
chose in our comparison.

4.3.2.3. The optimistic-async algorithm

48

(a) (b)

CPU overhead(% of total CPU time)
20 ---··r··-·r···r····r··-T·-··r····r··--1·---1·----1

Latency (ma)
5'0 ---·-r··-·r···r··-T·-·-r··-·r····r····-r··-·r··- . g~~~R=r

18 -----1·--·-r··-T·----1·--··r·---1·----1·--··r·---T·----1
16 --·-·t··---r-----r--·--t···--r-----r-··--t·--.or~.eYfC u

14 ----+----+----+---+----+----+---+---*·-· : -----j
l l l ! l l ! ./ . ·~ch-1

12 -----r··--r···r···-r····r·--r~>. ·r···r··--l
1

: ::·::~:::_:F:1::::r:::;:::I::::j: __ ::j:::J:::::,
4 --·-·j··---~ --r···-·t···--i·-----r--·--t··-··t··---r-----1
2

---- : ···t····t··---:---··t····t··-··t···-·t··-·t··-··j
0+-~~--~~~~--~~-P~

0 5 10 15 20 25 30 35 40 45 50
Number of processors per operation (M)

4"5 --···j··-··t···j···-·t-····t···t··--·t···-·j··---+ ··j
4'0 ---··t···r-···t··---r---·r-···t··---r---·-i·· l-----l
3"5 --·-·i···-·t-···t··-··t····-t····t··--·[··;ll --··t··-·i
3'0 ---··t-··-·t··-·t··---r-----r---·t·.~-- : --·1·--··t··-··i
2'5 -----t··---r-----r·----r-----1·----; ---r--·-·t·----r-----j
2'0 ---··t···-·t··--1·----t··---: -··t··-··t·----1·----t--·--j
1.5 -----j···-·t··-·f··-- ; -··t····t··-··j·----j··--·t··---~
l.O -----1··---+-- l-----t·····t····t·····r···-·(·-·t··-··j
0'5 -----: ··t····t···-·t··-··t··-·t···--t··--·t···--t····j
0.0+--i--i-' --i'--p' ,_,.,._ _.,. ~·,__ --e'

0 5 10 15 20 25 30 35 40 45 50
Number of processors per operation (M)

Fiaure 4.3. Simulation vs. analysis: the op-synch aleorithm. Parame­
ters are At = 25/sec., Au = 100/sec., Xd = 0.5 ms, Xi= Xreq, = Xreq. =
Xreply = 0. 04 ms, and p 0 = 0. 0002. Solid lines are analytic bounds. Triangles are
simulation results for N =4 M. Squares are simulation results for N =M.

Figures 4.4(a) and 4.4(b) show the CPU overhead and latency of the
optimistic-async algorithm. Again, the simulation results and the analytic
results are in excellent agreement. This implies that the simplifications we
made in the analysis are very reasonable. Those simplifications are: (1) proces­
sors acknowledge TLB events independently, and (2) background job execution is
the dominant factor of delay. The discussion for (1) is the same as in Section
4.3.2.1. The shape of the curve in Figure 4.4(b) supports point (2): As M
increases, the delay increases rapidly up to the length of a time slice <X1) and
them increases much more slowly.

4.4. Performance Results

This section presents and discusses performance results for the three TLB
synchronization algorithms. The performance measures shown below include
CPU overhead, latency, space overhead, and throughput (Section 4.1.4). We first
explain how the results were obtained and plotted, and then show graphs of the
results.

7

6

5

3

2

1

0

(a) (b)

0 5 10 15 20 25 30 35 40 45 50
0

0 5 10 15 20 25 30 35 40 45 50

Number of processors per operation (M) Number of processors per operation (M)

Figure 4.4. Simulation vs. analysis: the op-async algorithm" Parame­

ters are A, = 25/sec., Au = 100/sec., Xd = 0.5 ms, Xi= Xreq 1 = X~q. =
Xreply = 0.04 ms, Po= 0.0002, and Xi= 25 ms. Solid line is analytic results. Tri­

angles are simulation results for N =4 M. Squares are simulation results for

N=M.

49

The numbers shown here are pure analytic results. We use only analytic

results because (1) they are computationally inexpensive to obtain, and (2) they

seem to agree well with simulation results (Section 4.3.2).

The four performance measures are obtained as follows. We first calculate

CPU overhead and latency using the equations and procedures given in Section
4.2. We show a single value for each case, even if the analysis gives only bounds.

For the latency of the 2-phase algorithm, we use lower bounds because they are

reasonably close to simulation results, whereas upper bounds do not (Section

4.3.2.1). In other cases, the bounds are close, so we arbitrarily choose their

arithmetic means. We then derive the throughput ofTLB operations from CPU

overhead using Eq. (4. 7). Space overhead is defined as the mean number of

pages that are being unmapped and are thus unavailable for other uses. It is, by

Little's formula [Kle75], simply equal to the product of throughput times latency.

50

4.4.1. Choosing workloads

Since there are many parameters that can vary independently, it is imprac­
tical to compute or to interpret performance results for all possible combinations
of parameters. We hence focus our attention on the key issue: whether the TLB
synchronization algorithms scale well. We start with a canonical set of parame­
ter values. Then for each factor that we are interested in scaling, we plot perfor­
mance graphs by varying the corresponding parameter, taking the other values
from the canonical set.

The canonical set of parameter values is just a starting point. It represents
a reasonable workload under the current technology, though not necessarily the
workload of a specific application on a specific machine. In other words, we use
it as a basis for seeing trends, rather than for evaluating the performance of a
particular system. The canonical values are M = 16, A-t = 25/sec., 'Au = 100/sec.,
Xd = 0.5 ms, X, =Xreq

1
=Xreq

1
= Xreply = 0.04 ms, Xi= 25 ms, andp 0 = 0.0002 (see

Section 4.1 for the definition of these parameters). Note that we also used these
values in comparing the simulation and analytic results (Section 4.3.2). In fact,
the six graphs (Figure 4.2(a) to 4.4(b)) in Section 4.3.2 are condensed in Figures
4.5(a) and 4.5(c).

We vary parameter values in the following three directions in which future
technology and applications are likely to develop.

• Number of processors (M). The number of processors involved in a TLB
operation (M) varies from one to the total number of processors in the
system (N), depending on the degree of parallelism exploited by
software. We discuss N instead of M here because M scales with N
and there are always applications with M =N, e.g., the operating system
itself, if it is symmetrical and runs on every processor.
The number of processors that a shared-memory multiprocessor system
can support is mainly limited by the system bus bandwidth [GaP85].
This number is small for a single-bus system, e.g., up to 32 for the
Sequent Symmetry system [BKT87, SSS87]. However, it can be greatly
increased by using multiple buses and/or multi-level caches, as in the
following examples. The Wisconsin Multicube supports more than 1,000
processors [GoW88, GVW89]; Agarwal et al. proposed a directory scheme
for scalable shared-memory multiprocessors [ASH88]. Hendrik Goosen
at Stanford is extending the VMP multiprocessor to thousands of pro­
cessors (VMP-MC) using a memory hierarchy based on shared caches
[CGB89]. All these systems or designs support the shared-memory
model, and provide coherent caches.

• Arrival rate ()..,). The rate of TLB operations depends on applications.
Paging alone is not likely to generate a high rate of TLB operations as
main memory grows larger and larger. On the other hand, several
future applications will use virtual memory remapping for special pur­
poses, and can potentially generate a high rate of TLB operations.
One such example is the XPRS project, which is targeted at one

51

thousand TP1 transactions per second using a shared-memory multipro­

cessor [SKP88]. Part of the design is a fast recovery mechanism that

protects buffers against software errors [Sul90]. In short, the system

always keeps one unwritable copy of all recoverable data in a protected

memory region called stable buffers. This implies that virtual memory

remapping is needed when updating the data. Since the goal of the sys­

tem is one thousand transactions per second, the total rate of TLB

operations could be high.
Another example is high-performance network communication. Next­

generation networks will provide host-to-host throughput in the range

of 100 Mbps to 1 Gbps [BKNS9, ~iSS, Ros86]. One goal of current

research is to make this performance available to user processes [LeiSS].

To achieve this goal, memory remapping must be used for moving data

across address space boundaries. This is because at very high

bandwidths an extra software copy operation forced by the operating

system could easily double the time for delivering a packet to a user pro­

cess. If the host computer is a shared-memory multiprocessors, as in

the VMP/NAB project [KaCSS], a TLB synchronization operation may be

needed for every page remapped.
Moreover, there is a trend in operating system design towards moving

data servers (file servers, transaction managers, etc.) from the kernel to

user processes, as in V [CheS4], Ridge [BasS5], and QuickSilver

[HMSBS]. A data access in such an organization usually involves

several data movements between virtual address spaces. A file request

from a user client process to a user-level file server might be routed

through a transaction manager and a network communication manager

at each end. As a result, virtual memory remapping becomes an impor­

tant technique to avoid the negative performance impact of copying

large amounts of data between virtual address spaces.

• Service time (Xnply). Xnply includes mainly the overhead of getting a

request block from a queue, examining the request, freeing the request

block, and flushing a TLB entry. The cost of the last operation may

vary widely on different machines. For many existing architectures

(e.g., the VAX), flushing a TLB entry takes only a few assembly instruc­

tions, and the cost is trivial. But for machines with a virtually tagged

cache, which have recently gotten more popular, invalidating the map­

ping of a page requires flushing all cache lines corresponding to that

page (Section 2.3). The cost could be high because (1) the number of

lines per page may be large, and (2) flushing a dirty line generates main

memory traffic. The second aspect is particularly undesirable, for all

processors involved in a TLB synchronization operation flush their

TLBs at about the same time. Further, flushing caches would tem­

porarily increase the cache miss rate; this extra overhead should also be

considered as part of the service time. Finally, some RISC processors do

not have instructions for selective flushing a TLB entry, e.g., the Intel

S60 (formerly known as the N10) has only instructions for flushing the

entire TLB [IIISS].

52

We only vary parameter values in the above three directions. Hence, the perfor­
mance results shown below do not reflect other expected technological develop­
ments, such as increases in processor speeds.

4.4.2. The effect of the number of processors

Figure 4.5 compares the performance of the three algorithms, with a vari­
able number of processor per operation (M). In general, there is a tradeoff
between CPU overhead and latency. The 2-phase algorithm has the highest
CPU overhead and the lowest latency; the optimistic-asynch algorithm has the
lowest CPU overhead and the highest delay; the optimistic-synch algorithm is in
the middle for both measures.

Increasing M has two major effects on performance: (1) increasing the
number of replier events that a processor has to handle (Eq. (4.8)), and (2)
increasing the request synchronization time, which is the maximum of M ack­
nowledgement times. As a result, both CPU overhead and latency increase with
M.

We consider a TLB synchronization algorithm unacceptable if its CPU over­
head is greater than, say, 10% of the total CPU time. In this sense, the 2-phase
algorithm works only when M is small (less than 15 in Figure 4.5(a)). The
optimistic-synch algorithm greatly reduces CPU overhead by not requiring
repliers to wait for synchronization. Thus it cuts the CPU overhead for handling
a replier event, though not for a requester event. The improvement is roughly
the area between the top two lines in Figure 4.5(a). Clearly, stalling all repliers
is very expensive, especially when M is large. The optimistic-async algorithm
further reduces CPU overhead by (1) hatching operations to avoid interprocessor
interrupts, and (2) not requiring the requester to wait for synchronization. Its
CPU overhead is about 10% of total CPU time when M=50 in Figure 4.5(a).

The throughput of the algorithms decreases as M increases (Figure 4.5(b)).
In particular, there is a 40% drop for the 2-phase algorithm as M increases to
about 50. In our model, a processor cannot generate TLB operations when it is
already executing a TLB synchronization algorithm (Section 4.1). Hence, the
throughput of an algorithm decreases as its CPU overhead increases. Without
this self-regulating effect, CPU overhead would increase more rapidly with M
than in Figure 4.5(a), particularly for the 2-phase algorithm.

The latency of the optimistic-async algorithm is much higher than that of
the other two (Figure 4.5(c)). In this algorithm, replier events are executed in
batches, so the latency is dominated by how often batches are executed (i.e., by
X1). In Figure 4.5(c), the top curve increases rapidly to X1 and then slowly. The
other two algorithms both require a requester to wait for synchronization. How­
ever, the optimistic-synch algorithm causes longer delays because (1) it may fail
and hence need more than one round, and (2) its synchronization time is longer.
Section 4.2.2.2 discusses synchronization time in detail. In short, a requester
waits until all repliers have stalled in the 2-phase algorithm, but waits until all
repliers have finished processing the request in the optimistic-synch algorithm.

50

45

40

35

30

25

20

15

10

(a)

CPU overhead(% of total CPU time)

5

0~~~~--P-~~~~~~~

0 5 10 15 20 25 30 35 40 45 50
Number of processors per operation (M)

(c)

53

(b)

Throl}ghput (operations per processor per second)
25.o ----T·---!·--··r··--1·--··r··-·r···r··-·r··-T·----i

. . : : : : : :
22.5 . ----4-----4------; op-asynch

20.0 ;op-synch

17.5 -----r-----t-----t-----t-----;- -~-----t----t----t---·-1

15.0 ----+---+---+---+---+----i--·-·t· L---+----~
-----~-----f-----f-----~-----~-----~-----~----+----+-~~ase

~::: ····1·····1·····1·····1·····1···+··-t····t····t·-··1
-- ··-~- ····t .. ---!- ----~ -- --·-:· ----~--. --~ ----i-- '"''"'i ... ---~

I I I I I I t I I I

l ~ i ~ ~ i i ~ ~ ~
----T·---~-----r··--1-----r··-·r··--r··-·r·---~----1

-- --·r· ----1-- ---1- ----1--··-r ----r----r----r----r -----\
o.o~...._....,,.,.....P-~ _,.__,......,.

0 5 10 15 20 25 30 35 40 45 50
Number of processors per operation (M)

(d)

Figure 4.5. The effect of the number of processors on performance.
Parameters are At = 25/sec., Au = 100/sec., xd = 0.5 ms, xi= XIWII = Xreq. =

Xreply = 0.04 ms, Xi = 25 ms, and Po= 0.0002.

54

As CPU overhead increases, the chance that a replier has already stalled due to
other requests gets higher.

The space overhead shown in Figure 4.5(d) is actually the mean number of
outstanding TLB operations. When a page is unmapped from a virtual address
space, e.g., for pageout, the physical page cannot be assigned for other uses until
the associated TLB operation has completed. Hence a page may be temporarily
unavailable when a TLB operation is in progress. The shape of Figure 4.5(d) is
similar to that of Figure 4.5(c). Since the absolute values are so low (less than
one page for all cases shown), the relative differences among the three lines are
not important. Consequently, space overhead should not be a factor to consider
when choosing an algorithm.

4.4.3. The effect of the request rate

Figure 4.6 plots performance against the amount of regular computation
between two TLB operations (i.e., against 1/A.,). Reducing 1/A., increases the

number of replier events each processor has to handle, and hence increases CPU
overhead (Figure 4.6(a)). Reducing 1/A., also increases throughput. However, as

shown in Figure 4.6(b), the throughput is less than A, because a processor gen­

erates TLB operations only when it is not executing a TLB synchronization algo­
rithm. In Figure 4.6(a) and (b), the throughput corresponding to 10% CPU over­
head is about 20 operationslprocessor/s. for the 2-phase algorithm, 40 for the
optimistic-synch algorithm, and 80 for the optimistic-async algorithm. Such
throughput may be enough for paging, but not for the special applications men­
tioned in Section 4.4.1.

Unlike M, A, has almost no effect on latency (Figure 4.6(c)). Two factors

dominate latency: (1) the time for preparing and issuing interprocessor requests,
and (2) synchronization time. Both of them are largely determined by M, and
have little to do with A,. A higher arrival rate may cause a higher queueing

delay (and hence a longer synchronization time) for some of the algorithms.
However, since system utilization is low (less than 10% if for the system to be
usable), the effect of queueing delay is unimportant.

The space overhead for the three algorithms varies widely (Figure 4.6(d)).
But the differences are again unimportant because the absolute values are very
small (less than 5 pages for the worst case).

4.4.4. The effect of service time

Figure 4.7(a) plots CPU overhead against the cost of processing a replier

event <X reply). The three lines all increase with Xreply, but at different rates. The
rates differ mainly because Xnply has a different effect on the synchronization

time for each algorithm. The optimistic-asynch algorithm does not require pro­
cessors to wait, so its synchronization time is always zero. The optimistic-synch
algorithms requires a requester to wait until all repliers have finished the
request. A longer Xreply causes a longer acknowledgement time and hence a

55

(a) (b)

Thr2'il>h~~1~~Tl~l!_l_~_P.Pf!Of-1~-Tnd)

0
100 90 80 70 60 50 40 30 20 10 0

Computation between operations (~ in ms)

(c)

180 --··t····t···t···t··-·t····t··-·t····t-···i··- r-asynch

160 -·-·t··-·t··-·t··-r·-·t····t··--r---r----r ·1
140 ····t····t····j·····j·····j··-t--··t·· .. t····j·· r•ynch

:: ::::r::r::;:::::j:::::r:::r::r:r::r ::1
80 ····t····t···t···t·····t····t····t····t··· ·-zfhase

: ----El:-J:J::-::r:::r __ F_~::::rJ
0._~~-P_.~~~~._~~

10090 80 70 60 50 40 30 20 10 0

Computation between operations (~ in ms)

(d)

Latency (rna) Space overhead (pages per processor)

:: ::]:. :::::! .. :::]:.::::I:.·:::I:.-::::1:.-::::J:.-::::J:.-::::J.~: ::]_.: :-; __ :·:f.:_::l __ : __ l_:·::l __ ::·l-:.:_r:::r·_::t::::t::·:; p-~ch
3

.
5 ··-··r·-·-·r··--·r-···t"···t···r···r·-·r···r -~

25.,__._· _...·_._· _.....·_._·,.·_._·-·-~: -~::p-asynch 3 0 ·····:-----f·····f·····~-----~-----~-----~-----+·-··+· --~
. ' ' ' ' ' ' ' ' ' . : : : : : : : : : :

: : : : : : : : : :
20

-·-··r··---~-----~---·-r···-r·-·r··-·r···r·····r·····! 2

2
.-o
5

::::::::· ~~~~~!:.· ~~~~~:::.~~~~~~.~:~~~~~l: .. ~~~J:.~~~~~~::.-~~~I:. ~~~~T -~J:.
15 ·····r:·-···t:·····1:·-···1:·····1:·····r: ····r: ·····r: ·····r: -----~:
10

····· :···· ·;··· ··;···· ·;··· ··l···-r-···tl····:··· .. ! ~ :: :::::.·t::::::.:::::::.-:::::1.: ::::: :.=:::::t:::: :.·::::·
7.' ::.::.: :::::_1

5 ·-···t·····t·····t·····t····i·····t····t·····r·····r·····i
0 : : : : : : : : : p~~ch ~:: ·····;·····;-····:··········· r···-r··-r--r···l -:x.rch

100 90 80 70 60 50 40 30 20 10 0 100 90 80 70 60 50 40 30 20 10 0

Computation between operations (~ in ms) Computation between operations (~ in ms)

Figure 4.8. The effect of the request rate on performance. Parameters

are M = 16, Au= 100/sec., ~ = 0.5 ms, Xi= Xrtq 1 = Xrtq• = Xrtply = 0.04 ms,
X1 = 25 ms, and p 0 = 0.0002.

56

longer synchronization time. The 2-phases algorithm requires a requester to

wait until all repliers have stalled. As Xreply increases, the waiting time becomes

shorter because the chance that a replier has already stalled due to other TLB
operations is higher.

In this figure, CPU overhead is greater than 10% when Xreply is greater

than about 250 J.1S for all three algorithms. We have stated in Section 4.4.1 that
Xreply is high for machines with virtually tagged caches. We now use SPUR as a

numeric example [Hil86,Ne088]. The cost of flushing a cache line ranges from
12 cycles (for reading tags of a nonexistent line) to 37 cycles (for a dirty line).
Since a page consists of 128 lines (4096 bytes/page divided by 32 bytes/line), the
total cost of flushing a page ranges from 1536 to 4736 cycles. Clearly, con­
sistently changing the virtual memory mapping of a page is very expensive on
shared-memory multiprocessors with virtually-tagged caches.

Figure 4.7(b) to (d) show the effect of Xreply on the other three measures.

The discussion in Section 4.4.3 still applies, so we do not repeat it here.

I

57

(a) (b)

25.0
CPU overhead(% of total CPU time) Thro~hput (operations per processor per second)

25.0 ····-:··-··:·····:·····:·····:····:····:····:····-:·····:

22.5

20.0

12.5

10.0

7.5

5.0

2.5

:::: :::~o -as~h
17.5 ···+····j·····j·····j·····t····t····t···-r···:·····: ih"ki
15"0 ·····r·····1·····1·····r····T····r···r····T·····r·····:
12"5 ·····t·····t··--·i·····i·····t····t····t····t·····r··-··i
10"0 ·····t·····t·····t·····j·····t····t····t····t·····t·····j

1.5 ---··f··---~-----1··---~·-·-·t····+·-··t····t··--·r-----:

l ~ ~ l ! ~ i i ; ~
5 0 ····-~-----~-----:: ~:. ~ ~ ~ :

. l l l l l l l l l l
0.0 --.i--.......... -t--r--i--'

2
.
5 ····-r-···-r···-r···-r····r···T····T····r····r·····l

0.0._-P~~~-9--.-~~--~-.~

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Cost of executing an replier events CXreply in J.l.S) Cost of executing a replier event f.Xreply in J.I.S)

(c) (d)

Latency (ms) Space overhead (pages per processor)
40 ·····r:·····r:·····r:·····1:·····1:·····1:····T: ····1: ····1: ····!: o.s ····T····r····T····l····-r····r···r--··r···T····-~

: : : : : : : : : :
35 ····-~·-··r··r··r··r··r··r··r···-r-···1 o.

7 ····r···l····-r····l·····r····r··r--r···r·····i
30 -----t:o: ·····::0' ----···;: ~:0:··--- .. :;0·-·-- .. :;0,···-·t:,: ····~::' ····t:o' -----.:;0 0.6 ;. ~-----~-----~-----; ~:-........ .;,.. :

i i ! ; ~ l 1 1 1 1
• o o o o , • o I 1 h o o o o o , I I o o

25 ... '::: :.1: 1::
0

':: '::: -•:::·····-.:::·····..-::: :::;::

0

op-async 0.5 ~ 1 1 1 1 ~ op asynch ·····:·····:·····:·····:·····:·····:·····: ···r···T : -
: : : : : : : : : :

20 --···r::·····r::·····r::·····i::·····i::·····i:······i::·····t:: ····t:: ·····1:: o.4 ····+····i····+····i····+···+···-~·-···+····+····-l
l l l l l l l l l l

15
·····: ····-:-···t···l-·l-·l···t·-r··-r···! o.a ····r··-~-----~-----~·-···t····:·····t····r----r····:

10 ·····:····T····:····r··T-·T··r··rr··1 o.
2 ·····r····-~·-···:····-~·-··-r···l···t····t···r-·l

5 ·····.r----·f,······i,o···--r····1·····r····!o' ·---r-·--!0° ···:0: o2pp-hsaseynch 0"1 ----·r·--··;----·;-----r---·r---r--·y----r···;--·--; op-synch

• ' I ; j ~ i i o I I • : : 2phase
0 0.0

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Cost of executing a replier event <Xreply in J.l.S) Cost of executing a replier event f.Xreply in J.LS)

Figure 4. 7. The effect of service time on performance. Parameters are

M = 16, A, = 25/sec., Au = 100/sec., Xd = 0.5 ms, Xi= Xreq. = 0.04 ms, Xreq 1 =Xreply,

xj = 25 ms, and p 0 = 0.0002.

58

4.5. Summary and Conclusions

We have analyzed and simulated the performance of three TLB synchroni­
zation algorithms. This section summarizes our methods and results, and draws
conclusions.

We use an iterative method to analyze the algorithms. We do not model
and analyze the system as a queueing network. The interaction among proces­
sors, such as blocking for acknowledgements, makes product form queueing net­
work solutions impossible. In the iterative method, we fix some performance
measures to simplify the model, calculate other measures using the simplified
model, and finally recalculate the fixed measures. This procedure is repeated
until the fixed measures converge. We apply queueing theory only to some indi­
vidual steps of this method, not to the problem as a whole. This method is com­
putationally efficient; it converges rapidly for all reasonable parameters we have
used.

We verify the analysis using simulation, and obtain results in good agree­
ment with those produced by the analysis. We do not use a standard simulation
language or tool, such as GPSS [Sch74]. Instead, we use the recently developed
Berkeley Interactive Statistical System (Bl.SS) plus our own simulation engines
written in C [AbR88]. In general, simulation is CPU intensive, particularly
when the number of processors is large, and when the rate of TLB synchroniza­
tion is high. Therefore, simulation is not an efficient method for studying scala­
bility, which is one of our primary interests. On the other hand, the computa­
tion overhead of our analysis method has little to do with the values of the
parameters. Hence, this method is good for studying scalability.

Performance results depend on the choice of parameter values. Our results
do not reflect the performance of a specific algorithm on a specific machine; this
study is not meant to be used to find optimal design points in the first place. On
the other hand, our results show trends and are sufficient to support the follow­
ing points:

• There is a tradeoff between CPU overhead and latency. For example,
the 2-phase algorithms has the highest CPU overhead, but the lowest
latency.

• All algorithms are CPU-bound under high workloads. Consequently,
under such conditions, CPU overhead is the major consideration in
choosing an algorithms.

• The CPU overhead of the 2-phase algorithm is much higher that that of
the optimistic-synch and optimistic-asynch algorithms. The ratio varies
with the values of the parameters, but is usually greater than 2:1.

• None of the these three algorithms scale well with the number of proces­
sors, the rate of TLB synchronization operations, or the overhead of
flushing a TLB entry.

Our performance results can also be used to argue that some other TLB
synchronization algorithms (see Chapter 3) do not scale well either. The

59

optimistic-synch algorithm becomes a one-round algorithm when Po is zero.

Since we used a very small value for p 0 , for the performance of of the optimistic­

synch algorithm should be close to that of the PTE -first and TLB -first algo­

rithms for the parameter values we used. Similarly, the performance results of

the optimistic-asynch algorithm should be close to that of the PTE -first',

TLB -first', and optimistic' algorithms for the parameter values we used.

Therefore, we conclude that we need better ways to handle TLB incon­

sistency than the algorithms we have evaluated. To make virtual memory

remapping scalable (e.g., to allow its use for supporting high-performance 110),

we must reduce the CPU overhead of TLB synchronization. This usually

involves exploiting asynchrony and weaker consistency semantics (see Chapter

3). More important, the operating system should avoid TLB synchronization by

tolerating TLB inconsistency. The next chapter presents principles and a virtual

memory system design based on this conclusion.

Chapter 5

Tolerating TLB Inconsistency

We have drawn two conflicting conclusions. Chapter 4 shows that software
TLB synchronization algorithms do not scale well. On the other hand, Section
1.1 and Section 4.4.1 show situations where the rate of virtual memory remap­
ping, the number of processors, or the overhead of flushing a TLB entry could be

high. This chapter explains how we resolve this conflict. In short, we reduce the
overhead ofTLB synchronization by tolerating TLB inconsistency. We avoid the
need for TLB synchronization by exploiting trust relationships and lazy remap­
ping. When TLB synchronization is necessary, we do it efficiently by exploiting
asynchrony.

This chapter consists of two parts. The first part (Sections 5.1 and 5.2)
discusses principles for tolerating TLB inconsistency, omitting details to make
the ideas clear. The second part (Section 5.3) presents a virtual memory system
design, filling in details and demonstrating that the principles described in the
first part can be used coherently. The design is part of the DASH virtual
memory system design. We do not show the complete DASH design here, but
emphasize the mechanisms for handling TLB inconsistency. Some techniques
for tolerating TLB inconsistency have been mentioned earlier (Sections 2.4 and
3.1). The chapter still includes them for completeness.

5.1. Three Types of Tolerable TLB Inconsistency

We identify three fundamental types of tolerable TLB inconsistencies, upon
which most mechanisms for tolerating TLB inconsistency are based.

(1) Safe inconsistency.

(2) Transient inconsistency.

(3) Trusted inconsistency.

For each type of inconsistency, we explain its properties, discuss its performance
tradeoffs, and outline mechanisms that tolerate it (this section concentrates on
high-level ideas; Section 5.3 gives details of the mechanisms).

5.1.1. Safe inconsistency

As explained in Section 2.4, when the operating increases the access rights
of a PrE in main memory, the TLB inconsistency it causes is safe. Such an
operation may produce stale TLB entries that allow less access rights than the
corresponding PTE does. A legal memory reference using a stale TLB entry may
thus be rejected, generating a protection fault. However, the page fault handler
can fix the problem by flushing the stale TLB entry on the faulting processor.
Therefore, using such a stale TLB entry does not hurt the integrity of the

60

61

memory system, and is transparent to application programs.

Additionally, TLB entries with incorrect referenced bits are also safe. They

do not allow a processor to make illegal memory references, though they may

affect page replacement algorithms.

The operating system does not need extra code to exploit safe TLB incon­

sistency, except an extension to the page fault handler. On the other hand, the

operating system does need to be aware of whether the TLB inconsistency

caused by a virtual memory operation is safe or not. Otherwise, it may perform

unnecessary TLB synchronization operations. See Section 2.4.2 for operating

systems operations that tolerate safe TLB inconsistency.

Tolerating safe TLB inconsistency is not always free; we now discuss the

performance tradeoff for the two cases mentioned above. First, tolerating TLB

entries with insufficient access rights is an instance of the lazy remapping prin­

ciple, which delays operations as long as possible. This approach replaces the

overhead of synchronizing TLBs with the overhead of handling possible page

faults. It may improve the overall performance because (a) a processor may not

access the page corresponding to a stale TLB entry, or may have replaced the

TLB entry before accessing the page; and (b) handling individual page faults is

cheaper than synchronizing TLBs, which may involve interrupting and stalling

processors.

Second, tolerating incorrect referenced bits may cause the page replacement

algorithm to function suboptimally, particularly for LRU-based algorithms. Con­

sequently, page replacement algorithms that do not rely on referenced bits, e.g.,

the UNIX clock algorithm [BaJ81], are more suitable for shared-memory mul­

tiprocessors. This, however, is not an important issue in the future because, as

physical memory becomes larger, paging activity will likely to be reduced

significantly.

5.1.2. Transient inconsistency

Transient inconsistency corresponds to the temporary period of TLB incon­

sistency allowed by the weaker consistent-when-done semantics (defined in Section

3.1). Specifically, when the access rights to a page are being reduced from

high_rights to low_rights by an algorithm, old TLB entries containing

high_rights are considered valid by the algorithm until the algorithm ter­

minates, even after the PTE has been changed to low _rights. The shaded area in

Figure 5.1 illustrates the period of transient TLB inconsistency.

A transiently inconsistent TLB entry may allow greater access rights to a

page than the corresponding PTE does. In other words, a processor may use it to

make memory references that are not allowed by the corresponding PTE without

generating a protection fault. Consequently, the operating system cannot com­

pletely ignore transient TLB inconsistency. It must keep track of all pages that

are transiently inconsistent and manage them properly. The operating system is

capable of doing this because it knows when transient inconsistency starts and

I

PrE contains
hi.Bh_rights

'

memory referenc~s use either
high_rights {r low _rights

Transient
Inconsistency

no memorY, references
use high_rights

----------+---------~~----~,.~~----~-------.~ Tlme

algorithm PrE is ch8J1ged
starts to low_rig!Us

algorithm
ends

Firure 5.1. Transient TLB inconsistency.

ends; it initiates the V?vl operation that causes transient inconsistency.

62

By tolerating transient TLB inconsistency, the operating system can use

more CPU-efficient TLB synchronization algorithms, e.g., the optimistic algo­

rithms as opposed to the 2-phase algorithm (see Chapter 3 and Table 3.1). Note

that the period of transient TLB inconsistency can be extended over context

switches or even longer, allowing asynchronous versions of the optimistic algo­

rithm to be used.

Paging, in which the latency of pageout operations is unimportant, is an

ideal situation to tolerate transient TLB inconsistency (i.e., to use the asynchro­

nous optimistic algorithm). In fact, some real systems have already exploited

this, although they did not explicitly use the term transient inconsistency

[FHM87]. To avoid the overhead of interprocessor interrupts, the operating sys­

tem batches page invalidation (i.e., pageout) requests together. It keeps track of

all to-be-invalidated pages, and dose not recycle a physical page until the

corresponding TLBs are synchronized. Before TLBs are synchronized, referenc­

ing an to-be-invalidated page is considered legal, and will cause that page to be

revalidated.

Message-passing is another case in which transient TLB inconsistency can

be tolerated. We assume that the system moves a page of data from the sender's

virtual address space (VAS) to the receiver's using virtual memory remapping

instead of software copying. We also assume that the semantics of message­

passing ensure that, once a page has been received, it is protected from processes

running in other VASs, including the sender's. To implement such semantics,

the operating system either (1) unmaps the page from the sender's VAS and

maps it into the receiver's, or (2) maps the page as read-only in both V ASs. Both

alternatives reduce the access rights of the page in the sender's VAS, and thus

require TLB synchronization. The operating system can reduce the overhead of

63

TLB synchronization by tolerating transient TLB inconsistency during the time

delay between a send and the corresponding receive operation. If the send

operation precedes the receive operation, this delay is indefinitely long; if, on

the other hand, receive precedes send, this delay is the latency to reschedule

and wake up the receiver. Note that tolerating transient inconsistency may

allow the sender to modify the message after it has sent it but before the receiver

has received it. This, however, does not violate the integrity of the receiver; it is

equivalent to modifying the message before sending it.

5.1.3. Trusted inconsistency

A system often has high-level semantic rules that restrict memory refer­

ences, e.g., a rule forbidding a process to access a virtual page that has been

unmapped. These rules, when obeyed, can simplify TLB synchronization,

because a stale TLB entry is harmless if the page it represents is never accessed.

Tolerating trusted TLB inconsistency is based on the above idea. The

operating system allows user processes to specify trust relationships among

themselves, where trust means trusting each other to obey high-level semantic

rules. The operating system tolerates a stale TLB entry if (1) high-level seman­

tic rules forbid the use of the TLB entry, and (2) processes that may use the stale

TLB entry are trusted by processes that may be damaged by the stale TLB

entry.

When a user process trusts others, it gives up, at least partly, the virtual

memory protection provided by the operating system. The integrity of its VAS

may be damaged if the high-level semantic rules are violated. In other words,

the cost for better performance is reduced protection. However, this issue is not

critical because cooperating processes implicitly trust each other to obey certain

rules, e.g., the format of the messages to be exchanged. When the rules are

violated, they will not function correctly, in which case protecting their V ASs is

meaningless. Note that the operating system still fully protects V ASs that do

not exploit trust (but with performance penalties).

Message-passing is a good application in which trusted TLB inconsistency

can be tolerated.. Continuing the example in Section 5.1.2, we assume that,

when a page is transferred from one VAS to another, it is either (1) unmapped

from the sender's VAS and mapped into the receiver's, or (2) mapped as read­

only in both VASs. We define a semantic rule for each case. For case (1), the

sender should not access the page after sending it; for case (2), the sender must

inform the operating system before modifying the page 1. Thus, when the access

rights to a page are reduced in the VAS of a trusted sender, it is unnecessary to

flush stale TLB entries; the semantic rule forbids the sender to use the excess

access rights allowed by a stale TLB entry. In real applications, a receiver often

trusts a sender. For example, a client may trust a server; a user process trusts

1 This is similar to copy-on-write, except that a page is made writable by a system call rather than by the

page fault handler.

64

the kernel. Also, a server can trust a client when the server does not interpret
the received data, as in a file server or network server.

Moreover, the operating system can tolerate trusted TLB inconsistency
within the kernel. In many situations, the kernel remaps a page for its own
needs, e.g., Sun UNIX remaps a page to a special range of virtual addresses to
perform DMA [Che87,SSS85]. Usually, the kernel knows which pages are
unsafe to access, and can avoid accessing them accordingly. Therefore, it is
unnecessary to synchronize TLBs after remapping these pages; the kernel trusts
itself not to use stale TLB entries.

5.2. Software Structure of the VM System

This section discusses OS organization and layering issues. It discusses
only principles; Section 5.3 gives detailed designs. We first present a portable
model of the virtual memory system, and then examine how mechanisms for
handling TLB inconsistency fit into this model.

5.2.1. A portable model

AB hardware becomes more diversified, many operating systems emphasize
portability in structuring the virtual memory system
[ATG88,GMS87,GMS87,0CD88,RTY88]. A popular model is to divide the vir­

tual memory system into a large machine-independent part and a small
machine-dependent part (Figure 5.2). The interface between the two parts is a
key element of this model. It must be able to support various high-level VM con­
structs, and yet be easy to implement on different VM architectures. This

Machine-independent part
(large)

L Mach)ne-indepe l
Ill~ ~U:U.::t'!

dent

.........

Machine-rs~:ll~ent part

Firure 5.2. A portable model of the virtual memory system.

65

interface, which is itself machine-independent, defines a virtual machine for

higher layers of the operating system.

5.2.2. Hiding TLB inconsistency inside the machine-dependent part

Given the portable VM model, one way of handling TLB inconsistency is to

treat it as a machine-specific difficulty, i.e., to hide it completely inside the

machine-dependent part. When reducing the access rights to a page, the

machine-independent part does not distinguish whether the hardware is a uni­

processor or a multiprocessor. It always calls the same function of the interface,

and the machine-dependent part always uses a uniform mechanism to synchron­
ize TLBs, if necessary.

This scheme, although straightforward, is inflexible in tolerating TLB

inconsistency. Tolerating transient and trusted TLB inconsistency requires

interaction between the machine-dependent and machine-independent parts.

For example, the machine-independent part must keep track of pages that are

transiently inconsistent (see Section 5.1.2). The machine-independent part must

also explicitly define trust relationship in order to exploit trusted inconsistency
(see Section 5.1.3).

Black and et al. argue that such inflexibility is not an issue, for the over­

head of synchronizing TLBs is low according to their measurements [BRG89].

The system they measured had 16 processors and 96MB of physical memory.

The applications they measured were parallel transaction processing, kernel

compilation, theorem proving and shortest path searching. These applications
do not actively remap pages between VASs; they cause less than 0.5 TLB syn­

chronization operations per second per processor, primarily due to paging.

However, there are cases where the number of processors is high or the rate

of TLB synchronization is high (Section 4.4.1). We have shown that TLB syn­

chronization algorithms do not scale well under these conditions (Chapter 4).

Consequently, this scheme (hiding TLB inconsistency inside the machine­

dependent part) is not a scalable solution.

5.2.3. Handling TLB inconsistency outside the machine-dependent
part

To be scalable, the operating system should tolerate all three types of toler­

able TLB inconsistency. In other words, TLB inconsistency should be made visi­

ble outside the machine-dependent part. We would like to do this in an abstract

way, i.e., the system should provide high-level software enough handles and

hooks but avoid specifying detailed TLB characteristics.

For example, it is sufficient that the interface between the two parts of the

VM systems (1) accepts performance hints on remapping operations, and (2) sup­

ports asynchronous remapping operations. Hints, e.g., whether the latency of a

remapping operation is critical, allow the machine-dependent part to make per­

formance tradeoffs on a remapping operation and to pick the most suitable TLB

66

synchronization algorithm, possibly tolerating transient TLB inconsistency.

Asynchronous algorithms, e.g., optimal-asynch, need proper support, such as

completion notification, for bookkeeping and synchronization at higher layers.

Beyond the VM system, a subsystem that uses VM remapping should (1)

define semantic rules, e.g., page ownership, that regulate access to a page; (2)

define trust relationships; and (3) allow its clients to specify trust relationships

using hints. Based on such information, the subsystem determines whether it

needs full protection from the VM system when a page is remapped, and then

instructs the VM system accordingly.

5.3. A VIrtual Memory System Design

This section presents a VM system design, filling in the details of the

mechanisms and principles we have sketched in Sections 5.1 and 5.2. The

design is part of the DASH distributed operating system kernel; some ideas for

tolerating TLB inconsistency were sketched in an earlier report [TAG87]. This

section does not intend to cover the complete DASH design, but focuses on

mechanisms for tolerating TLB inconsistency. Section 5.3.1 gives an overview of

the DASH kernel and of the VM system, establishing the context for the discus­

sion in the following sections. Section 5.3.2 describes the interface between the

machine-dependent and machine-independent part of the VM system. Section

5.3.3 and Section 5.3.4 present designs for tolerating TLB inconsistency in han­

dling paging and message-passing respectively. Finally, Section 5.3.5 discusses

copy-on-write, for which tolerating TLB inconsistency is difficult.

5.3.1. Overview and context

The DASH project has defined a communication architecture for a large,
high-performance distributed system [AnF86, AFR87, And88, AnF88, ATW89].

The architecture is intended to support interactive multimedia communication,

and is based on communication channels with real-time performance guaran­

tees. The DASH kernel was developed from scratch as an experimental testbed.

It is implemented in the object-oriented language C++ [Str86]. It is about 30,000

lines long, of which about 10,000 are comments. The DASH kernel currently

runs on Sun 3/50 workstations. Although a Sun 3/50 workstation is a uniproces­

sor, the DASH kernel was designed with multiprocessors in mind, and is being

ported to a Sequent shared-memory multiprocessor. As we will see below, its

message-passing system and VM system fully address the problem ofTLB incon­

sistency in shared-memory multiprocessors.

5.3.1.1. Object-oriented programming

We now briefly introduce some terms and concepts of object-oriented pro­

gramming that we will use in presenting the design. Kernel data structures and

procedures are represented as objects. An object has private data, public data,

and a set of routines (called member functions in C++ terminology) that manipu­

late the object. Private data are invisible and inaccessible externally; public

67

data and member functions together define the interface to the object. The

definition of an object is specified by its class. A derived class may inherit pro­

perties from a base class, possibly redefining and adding some properties. Class

inheritance allows code sharing. It also allows specialized implementations of a
common interface. See [Str86] for a complete description of the object-oriented

programming facilities used in DASH.

5.3.1.2. Local kernel structure

The structure of the DASH kernel is described in detail elsewhere [AnT88].

This section describes only several kernel properties that are essential to

presenting the internal design of the VM system.

DASH supports multiple virtual address spaces (V ASs). A VAS is a unit of

protection and resource allocation. There is one kernel VAS and multiple pro­
tected user V ASs. Each VAS can be populated by any number of processes, all of

which have distinct kernel context blocks. DASH can be viewed as a message­

passing kernel. User-level processes interact with the kernel (and with

processes in other V ASs) exclusively by message-passing. System calls, excep­

tions, and requests to user-level servers are all implemented as message-passing

operations. Section 5.3.4 describes the user-level message-passing system; the

next paragraph describes message-passing within the kernel VAS2•

The kernel uses message-passing for interactions between various kernel

components. Dynamically, the kernel is organized as a collection of trap

handlers and processes (or threads) that share the whole kernel VAS. A trap

handler or a kernel process communicates with other kernel processes via

message-passing, as well as via the shared kernel VAS. For example, an 1/0

interrupt handler sends a message to a driver process on an 1/0 event; a buffer

producer process delivers a buffer by sending it as a message, possibly being

blocked by the flow control mechanism of the message-passing system. A

message-passing operation may be a pseudo operation (called uniprocess mode in

DASH terminology), in which case the send operation is carried out as a pro­

cedure call, passing the message as an argument. However, a pseudo message­

passing operation has exactly the same interface as a regular message-passing

operation; the sender cannot distinguish the difference. Table 5.1 shows the

simplified interface to the message-passing system.

Finally, the kernel uses preemptive deadline-based process scheduling.

Shared kernel objects are guarded by fine-grain locks. Concurrent kernel

processes together with fine-grain locking establish a basis for kernel parallelism

in a shared-memory multiprocessor.

2 The overhead of intra-kernel message-passing is much lower than that of inter-VAS message-passing.

Table 5.1. Simplified interface to kernel's messace-passinr system.
Message-passing operations are performed on message-passing objects, or

MPOs. Class inheritance allows specialized implementation of a common inter­

face.

Base MPO Class Derived Class Member Functions

stream MPO dual-process mode send(message)

receive(message_buffer)

control(options)

uni-process mode send (message)

68

request/reply MPO dual-process mode request_reply(request, reply_buffer)

get_request(request_buffer)

send_reply(reply)

control(options)

uni-process mode request reply(request, reply buffer)

5.3.1.3. The DASH virtual memory system

Figure 5.3 depicts the overall structure of the DASH VM system [ATG88].

The top part of the picture shows the abstraction, or users' view, provided by the

VM system. The system supports multiple V ASs, each of which consists of three

regions. The general region contains data that is private to a VAS, such as

stacks and heaps. There is no sharing between V ASs in this region. The shared

segment region contains shared read-only named segments (e.g., programs and

libraries). Physical pages contained in these segments are shared between

V ASs, and may be retained even when no VAS is using them. The IPC region

contains data to be moved between VASs using VM remapping. Messages to be

moved between V ASs are created, sent, and received in this region.

The middle and lower part of the picture show the VM implementation,

which follows the portable model described in Section 5.2.1. The middle part is

independent of hardware architectures and backing store services. It consists of

a set of objects and processes, such as the zero-filling process. The lower part is

hardware and backing store service dependent. The class VAS MD encapsulates
VM hardware architecture (MD stands for machine-dependent). -Each instance of

the class represents the virtual memory mapping of a single VAS. The class

BACKING STORE encapsulates backing store services. The implementations of

these two classes vary with hardware and the nature of backing store services,

but their interfaces do not.

virtual address space~
r- general

abstraction

~-v-As~'~ ~ I

I PHYS_PAGES

machine-independent
implementation

- ,.....

shared segment

IPC

.__s_H ___ s_EG ___ M_G_R __ __.I ~~I_P_c ___ RE_G_r_o_N __ M_G_R__.

VIRT PAGES

69

-------------~----------------------------------- BACKING_ STORE -------------------------·

Implementation Dependent
on VM Hardware

Implementation Dependent on
Backing Store Services

Figure 5.3. An overview of the DASH VM system.

5.3.2. Interface to the machine-dependent part

The interface to the VAS MD class (lower left comer in Figure 5.3) provides

a simple logical view of virtual memory mapping. It isolates machine­

dependencies, but allows high-level software to exploit features of VM hardware.

Sections 5.3.3 and 5.3.4 use this interface in describing paging and message­

passing.

70

Table 5.2 summarizes the member functions of the VAS MD class. We

briefly explain each one below. The constructor VAS_MD () creates a new

instance of the class either for the kernel VAS or for a user VAS, depending on

the value of the flag. For the kernel VAS, root start and root size specify
the portion of the kernel VAS that must exist in every user VAS. -For example,

one may choose to put the complete kernel in the lower or upper half of every

user VAS, as in UNIX. Alternatively, one may choose to put only basic

trap/interrupt handlers in every user VAS, and put the rest of the kernel in a

separate map. The VAS MD class does not assume a specific design; the inter-
face is flexible. -

The mapping represented by each VAS_MD object is specified by a sequence

of map (), urunap_synch (), and unrnap_asynch () operations on the object.

The two unrnap operations reflect the ideas described in Section 5.2.3. hint

has two boolean fields: (1) slow_flag specifies that the latency of the operation
is not critical, allowing the implementation of VAS MD to make tradeoffs; (2)

conditional_flag instructs the implementation tOhandle only simple cases,

e.g., if the optimistic algorithm fails after on round, it should return instead of

starting another round. unrnap asynch allows the implementation to use

asynchronous algorithms, which are usually more CPU-efficient. When an asyn­

chronous operation ends, the specified message plus a return code will be sent to

the specified MPO. If the MPO is a uniprocess mode MPO, the message-passing

Table 5.2. Simplified interface to the VAS MD class.
are invoked on VAS_ MD objects.

Member functions

Member Functions Comments

VAS MD(kernel flag, root start, root size) create a new VAS MD object

rnap(virt addr, phys add, access type) map a page

unmap_synch(virt_addr, readonly_flag, hint) unmap a page synchronously (unmapping
includes reprotecting it to read-only)

unmap_asynch(virt_addr, readonly_flag, unmap a page asynchronously

stream mpo, message, hint)

switch to() make this VAS MD the active mapping

is dirty(virt addr) is the page dirty?

clear dirty(virt addr) clear the dirty bit of the page

share(sharing id, seg start, seg end) declare sharing

config () return machine-dependent parameters

set_page fault hdr(handler) setup high-level page fault handler

71

operation is equivalent to a procedure call (see Section 5.3.1.2 and Table 5.1).

A processor is executing in the context of only one VAS at any time,
although there are multiple VAS MD objects. We call this VAS the active VAS of
the processor. The function switch_ to() makes the VAS_MD object on which
this function is performed active on the calling processor.

For demanding paging, is_dirty () and clear_dirty () check and clear
the dirty bit of a page respectively. They are used for determining whether to
write a paged out page back to the backing store. On the other hand, the inter­
face does not support referenced bits for two reasons. First, we assume that,
because of large physical memory sizes, page replacement will be infrequent.
Attempts to make intelligent choices (e.g., to approximate LRU) will not be
needed; a random choice will probably be sufficient. It is possible that other
readily available information (such as the recent CPU usage of processes in the
VAS) may be useful in making a heuristic choice. Also, some page replacement
algorithms do not use referenced bits, such as the VMS second-chance FIFO
algorithm [LeL82]. Second, eliminating referenced bits simplifies the problem of
TLB inconsistency. In general, the hardware may overwrite a PrE as a result of
setting a referenced bit. The operating system can force the hardware not to set
the referenced bit by setting the bit in every PrE. When a processor loads a PTE
into its TLB, it will not attempt to set the reference bit in the PTE again,

because the bit has already been set (see Section 2.1.3)3 .

share () is used for sharing among multiple V ASs. Generally, page-level
sharing can be done by mapping the same physical page into different virtual
addresses in a VAS or into different V ASs; this does not require special support
in the interface to the VAS MD class. However, certain VM architectures, e.g.,
the one in the IBM RT PC [ChM88], have special hardware support for
segment-level sharing. share () allows high-level software to declare
segment-level sharing, thus allowing the implementation to exploit the underly­
ing VM hardware. All VAS MDs that have called share with the same ID will
share the specified memory block, i.e., a map () or an unmap () operation on any
VAS MD will affect every one of them. When ID is 0, the memory block is shared
by all VAS MDs; when ID is -1, sharing is canceled. The DASH shared-segment
region uses-this facility [Gov89].

Finally, there are two housekeeping functions. conf ig () returns the
machine-dependent parameters of the virtual memory system, such as the size of
a page. set_page_fault_hdr () assigns a high-level page fault handler to be
called by the machine-dependent part on a page fault. On a page fault, the low­
level page fault handler extracts parameters from the stack and calls the
machine-independent page fault handler.

3 Similarly, TLB synchronization would be even simpler if we eliminate dirty bits. The software can ei­

ther emulate the dirty bit by protecting all pages as read-only fint. Or, UIUming that the paging rate ia low, it
can treat all writable pages as dirty when they are paged out. We will in the future remove theee two functions

(is dirty() and clear dirty()) from the interface if the implementation experience shows that they have

little performance benefit.-

72

5.3.3. Paging

This section describes the design of demand paging in the DASH VM sys­
tem, with emphasis on TLB inconsistency. In short, we reduce the overhead of
synchronizing TLBs by tolerating transient TLB inconsistency (or by exploiting
asynchrony). Managing transient TLB inconsistency is straightforward in our
design because (1) the latency of unmapping a page is not critical, (2) the
VAS_MD class has an asynchronous interface (see Section 5.3.2), and (3) the ker­
nel is programmed as multiple processes (see Section 5.3.1.2).

5.3.3.1. Overview: flow and states of physical pages

Figure 5.4 summarizes the design by showing the flow of physical pages in
the system. Background kernel processes move physical pages from the
in_use_list to the clean_list, and from the clean list to the

zero_list4 • In the other direction, a physical page becomes in_use when it is
reclaimed (i.e., referenced when it has been selected to be paged out but still con­
tains correct data), or explicitly allocated.

The overhead of replenishing the clean_list and the zero_list is
much higher than the overhead of emptying them. To ensure that requests for a
physical page are satisfied promptly, the system maintains pools of free pages in
the clean list and the zero list. (The BSD UNIX virtual memory system
use similar-ideas, though it has -a different design; see [BaJ81].) This approach
not only improves response times, but also removes page unmapping from the
critical path of virtual memory management. Consequently, the latency of
unmapping a page is not critical.

The state of a physical page can be in use, clean, zeroed,

being read, being written, or being unmapped. The first three
correspond to the three lists described above; the last three represent intermedi­
ate states in which an action is undergoing. States are manipulated by high­
level software. The VAS MD class does not change the state of a page.

Below, we concentrate on page-out operations. Page-in operations cause
only safe TLB inconsistency; zero-filling does not cause TLB inconsistency.

5.3.3.2. The unmapper process

Page-out operations are handled by an unmapper process and several
launderer processes. These processes interact with each other via a
launderer_mpo MPO. When the size of the clean_list is below a threshold,

the unmapper process randomly5 selects a page from the in_use list. It
changes the state of the page from in_use to being_unmapped, and calls (see

4 The namee are self-explanatory: clean means a page has not been modified since it was paged in;

zero means a page is zero-filled.

Section 5.3.2)

...

paged in from backing store r or ~~n~ly associated

unmapper process

lawulertr processes

+- fret
---+ allocate

zero-filler processes

~--+ allocate

Figure 5.4. The flow of physical pares.

VAS_MD::unmap_asynch(
virt_addr,
-readonly_flag, II invalidate the page

73

' Other algorithms are also possible. The issue here is not page replacement algorithms, but TLB incon­

sistency.

slow_flag I conditional_flag,
launderer_mpo,

74

return_message // allocated by the unmapper

The slow_flag indicates that latency of this operation is not critical, as

explained in Section 5.3.3.1. The condition flag instructs the implementa­

tion not to handle special conditions, most of which occur only when the page is

referenced during the unmap operation. These two flags together instruct the

VAS MD object to use the most CPU-efficient TLB synchronization algorithm.

Later, when the unmap operation ends, the return message will be delivered

asynchronously by the VAS_MD object to launderer_mpo.

5.3.3.3. Launderer processes

A launderer process writes dirty pages to their backing store using synchro­

nous writes. To allow multiple backing store write operations to proceed con­

currently, there are multiple launderer processes waiting on the
launderer mpo object.

A launderer process handles a physical page in different ways according to

the state of the page and the return code stored in return message. It moves

the page back to the in use list if (1) the state of the page has been changed
from being_ unmapped -to i;_use by the page fault handler; or (2) the unmap

operation failed, e.g., the PrE has been overwritten as a result of setting the

dirty bit. Otherwise, the launderer process calls VAS_MD:: is_ dirty() to

determine whether the page has been modified. It moves clean pages to the

clean_list, and writes dirty pages to the backing store after changing their

state to being_written. When the write operation ends, the launderer pro­

cess moves the page to the clean list if the page has not been referenced dur­

ing the write operation (i.e., no page faults during this period); else it moves the

page to the in_use_list.

5.3.3.4. Managing TLB inconsistency

Transient TLB inconsistency may occur when the state of a page is

being unmapped. More precisely, unmap asynch () may invalidate a PTE

before it has invalidated all corresponding TLB entries. Moreover, stale TLB

entries may exist for a long period of time (say, 100 ms) because

unmap_asynch () usually invalidates them in batches.

Transient TLB inconsistency is harmless in our design. The launderer

processes will not take any action on a physical page whose state is

being_unmapped; a message is delivered to the launderer_mpo after the

unmap_asynch () is completed. In other words, although a physical page is no

longer linked to its old virtual page in page tables, the content of the page

remains unchanged as long as its state is being_unmapped. If a process

accesses the old virtual page via a stale TLB entry, it will still get to the same

physical page. Therefore, accessing a page using a stale TLB entry yields correct

I

75

results.

We now enumerate all possibilities of accessing a page using a stale TLB
entry. Assume that a physical page ppage in state being_unmapped was
mapped to a virtual page vpage. The following cases are possible when a pro­
cess p accesses vpage on processor P.

• If the TLB entry for vpage has been invalidated on P, a page fault
occurs. The page fault handler calls VAS MD: :map (vpage, ppage)

on the faulting processor, changes the state of ppage to in_use, and
resumes the faulting process. A launderer process will move this page
to the in_use_list later (see Section 5.3.3.3).

• Otherwise, the memory reference is granted (accessing ppage). If this
memory reference overwrites the PTE as a result of setting the status
bit, the unmap operation will detect this after one round and return an
error code. Again, a launderer process will put this page in the
in use list later. - -

• Otherwise, if the reference does not overwrite the PTE, it has no effect
at all. The page will be unmapped as if the reference had not happened.

In all three cases, accessing vpage yields correct results.

5.3.4. Message-passing using virtual-memory remapping

DASH integrates virtual memory and message-passing, using VM remap­
ping to transfer large messages between V ASs (small messages are still copied).
Our design is intended not only to reduce software copying, but also to reduce
the overhead of synchronizing TLBs on shared-memory multiprocessors. Manag­
ing TLB inconsistency in message-passing is more challenging than in paging,
because the latency of remapping operations is critical. We tolerate TLB incon­
sistency by exploiting trust relationships and asynchrony.

Section 5.3.4.1 explains why software copying is undesirable. Section
5.3.4.2 shows our initial experience with using remapping on a uniprocessor.
Section 5.3.4.3 shows the software architecture of the message-passingNM sys­
tem. Section 5.3.4.4 describes the IPC region of the VM system, on top of which
the message-passing system is built. Section 5.3.4.5 describes the semantics and
interface of message-passing operations, emphasizing VM related aspects.
Finally, Section 5.3.4.6 examines the design from the point ofview ofTLB incon­
sistency.

5.3.4.1. Software copying vs. VM remapping

Virtual memory remapping is a class of techniques for logically moving or
copying a page of data from one VAS to another. Remapping is an attractive
alternative to software memory copying because updating a PTE is much faster
than copying a page on most machines.

It has long been known that interprocess communication (IPC) systems
should avoid unnecessary software copying of memory. Copying may be done in

76

communication protocols for retransmission, in data transfer between user and

kernel VASs, and in data transfer between two user VASs on a single host

[CHKSS, WaMS7].

With current technological trends, copying is becoming a more severe

bottleneck. Communication technology, particularly fiber optics, is advancing

rapidly [BirnS9, LeiSS]. Gigabit bandwidths exist at the link level, but a variety

of bottlenecks prevent user processes from fully exploiting this bandwidth. The
system bus of the host computer is often such a bottleneck, since it limits the

rate at which data can be moved between the network interface and main
memory [WilS7].

Memory copying is especially undesirable because it is bus-intensive. For

high-bandwidth data (e.g., real-time video), copying always produces heavy

traffic on the system bus, even when the system has cache memory or does I/0

directly to or from cache. This traffic slows down DMA devices and the computa­

tions of other CPU s.

The copying problem is exacerbated by the trend in operating system design

towards moving data servers (file servers, transaction managers, etc.) from the

kernel to user VASs. Some examples are V [ChZS3, Che84], Ridge [BasS5], and

QuickSilver [HMSSS]. A data access in such a system usually involves several

data movements between V ASs. A file request from a user client process to a

user-level file server might be routed through a transaction manager and a net­

work communication manager at each end. If copying is used to move data

between V ASs, this organization amplifies the negative performance impact of
copying.

5.3.4.2. Initial experience ofVM remapping on a uniprocessor

Our initial experience shows that VM remapping is advantageous on a

uniprocessor. This section gives some performance numbers about DASH run­

ning on a Sun 3/50 workstation. (More numbers can be found in [TzASS].) The

purposes of presenting these numbers, although they were not obtained on a

shared-memory multiprocessor, are (1) to show the relative performance of

remapping vs. copying, (2) to show the overhead of other operations associated

with remapping, and (3) to preview the design in later sections. Most of the

design for tolerating TLB inconsistency has been implemented in the current

DASH kernel. Hence we hope that we can achieve similar performance gains on

a shared-memory processor as we have on the Sun 3/50 workstation.

Figure 5.5 shows the throughput of data movement from one VAS to
another using message-passing on a Sun 3/50 workstation running DASH. The

throughput increases with message size, because the weight of the fixed per­

message overhead decreases when the number of pages in a message increase.

The two horizontal lines represent the throughput of pure software copying

(per-message overhead is excluded). In some operating systems, such as UNIX,

moving a page between two V ASs requires copying it twice (from sender to ker­

nel, and from kernel to receiver). DASH exploits lazy remapping, a principle

• I

30

20

10

upto90M
when size i.J infinite ,

c:qJY d.a.a once
c:qJY d.a.a twice

--~--------------------~~
8 16 32 64

Message size in kilobytes

6. pages are mapped on demand, but no paaes are acx:eaaed

0 pages are mapped by the receive ~ration. and all pages are acceued

0 paaes are mapped on demand, and all paaes are accessed

Figure 5.5. Throuchput of messare-passine: initial experience. The

numbers were obtained on a Sun 3/50 workstation running DASH.

77

that delays operations as long as possible. The throughput depends on whether

pages are remapped immediately or on demand, and whether the remapped

pages are accessed or not.

Figure 5.6 shows the J.l.S·level cost breakdown of sending a message contain­

ing an SKB page from one user VAS to another on a Sun 3150 workstation. Indi­

vidual operations will become clear as we explain the design in later sections;

this picture serves as a preview for now. Using VM remapping involves more

than just updating page tables. The operating system may have to manage

buffers, adjust data representation to reflect address changes, manipulate high­

level memory maps, etc. The DASH design intends to reduce these overheads,

and has been successful in its Sun 3/50 implementation.

5.3.4.3. An overview of the DASH message-passing system

Figure 5. 7 shows the overall software architecture of the message-passing

system. It complements Figure 5.3 by showing layers and interfaces of the

1231 Total elapsed time

641 User-level send operation
34 trap into and return from kernel mode
49 switch to and from the kernel VAS
15 convert and check user object references
46 check the message header

7 dispatch to the send operation
490 kernel-level aend operation

138 processing before message transfer
221 transfer the message

7 4 copy the message header
19 check a pace de~~eriptor in the meuage
81 transfer a page between V AS'•

32 look up and check memory mapa
26 invalidate a PrE

78

(needed only if the page ha• been mapped)
23 miacellaneou•

47 miscellaneous
131 processing after message transfer

296 Uaer-level receive operation
33 trap into and return from kernel mode
46 switch to and from the kernel VAS
16 convert and check user object references
46 check the header of the receive message

6 dispatch to the receive operation
98 kernel-level receive operation

91 processing before the process is blocked
7 processing after the process is awakened

51 complete the message transfer
24 copy header from temporary buffer to receive buffer, if needed

18 ensure that the page transfer ia completed
11 miscellaneous

120 Context switch between user processes

173 Access the received message
37 find the address of data in a structured message

134 handle a page fault
24 save state• and get parameters of the fault
M look up and check memory mapa
32 update a PTE
23 return from fault

2 miscellaneous

Figure 5.8. Cost breakdown of message-passing: initial experience.

Numbers are elapsed times (in IJ.S) for sending an 8KB message between V ASs

on a Sun 3/50. Operations in boldface are performed for every page in themes­

sage, while the others are independent of the size of the message.

79

system.

From a user's point of view, the message-passing system consists of two

basic elements: (a) messages to be passed, and (b) operations that move mes­

sages.

For (a), DASH has a standard message representation used by both the ker­

nel and user programs. A message is not necessarily physically contiguous: it is

represented as a header, which contains control information, up to 4KB of data,

and optional pointers to separate data pages. When a message is passed

between V ASs, the header is copied, whereas separate data pages are remapped.

The sender and receiver of a message manage the buffer for the header; the ker­

nel manages remapped pages.

USER SPACE

System Calls
(explicit operations)

User Message-Passing
(implicit operations)

Machine-Dependent VM

VM Hardware

Fipre 5.7. Software architecture of the messare-passinr system.

80

For (b), DASH is essentially a message-passing kernel. A user process

makes kernel requests by trapping into the kernel. The trap handler directly

handles only message-passing operations (Section 5.3.4.5 discusses these opera­

tions). Other "system calls", e.g., a request to create a process, are invoked by

sending a message to a special message-passing object in the kernel. To the trap

handler, a system call is just a regular message-passing operation.

A set of library routines provides user processes with a better interface to

the message-passing system. For example, some routines encapsulate the mes­

sage representation as a logical byte array; some prepare parameters and invoke

kernel traps.

The message-passing system uses the VM system to move data pages.

Hence, a message-passing operation may implicitly invoke a VM operation.
Alternatively, a user process may explicitly invoke a VM function by making a

system call (see Figure 5. 7). The VM system, particularly its IPC region, pro­

vides high-level support for the message-passing system. The machine­

independent VM system is built on top of the VAS MD class (see Section 5.3.2)
for controlling VM hardware. -

We will not present the complete message-passing system here (see [AnT88]

for details), but will concentrate on aspects related to VM remapping and TLB

inconsistency. Specifically, the following sections will describe (1) the IPC region

of the VM system, and (2) how message-passing operations accommodate hooks

for tolerating TLB inconsistency.

5.3.4.4. The IPC region of the VM system

The IPC region contains page-size buffers that can be moved between V ASs

by VM remapping. It is managed by the IPC_REGION_MGR class, a layer

between the machine-dependent part of the VM system (the VAS_MD class, see

Section 5.3.2) and the message-passing system. A virtual page in the IPC region

is called an IPC page. All data to be moved between VASs without copying must

be placed in IPC pages.

For managing TLB inconsistency, the IPC REGION MGR class supports

asynchronous VM remapping functions. These functions are similar to those of

the VAS _MD class (Section 5.3.2), but are more abstract.

For efficient implementation6, the IPC_REGION_MGR class allows only a
restricted form of VM remapping. First, an IPC page must be remapped to the

same virtual address in the destination VAS as in the source VAS. This ensures

that pointers to IPC pages remain unchanged after remapping, eliminating the

need for data representation adjustment. Second, there is a single "meta-level"

mapping from IPC pages to real pages, and each VAS sees a subset of this

• Design decisions described in this paragraph are orthogonal to tolerating TLB inoonaistency. They were

made for performance optimization. These decisions improve the efficiency of implementation, but also limit

the flexibility of using VM remapping; in our system, VM remapping is only used for data movement.

81

mapping7• Consequently, a virtual IPC page in different V ASs will not hold dif­

ferent data, i.e., it will not be mapped to different real pages at the same time.

This, together with the first rule, simplifies buffer management. When the ker­

nel needs to remap an IPC page from one VAS to another, the corresponding vir­

tual IPC page in the receiving VAS is guaranteed to be available. In other

words, buffer management is straightforward.

Based on the above two rules, we define the notion of page ownership for

protection and remapping of IPC pages. An ownership has three elements: an

owning VAS, a virtual page, and an access right. An IPC page may have multi­

ple ownerships, i.e., it may be owned by multiple V ASs, or by one VAS multiple

times, or both. The number of ownerships of a page determines the access right

to it. When the number is one, the page can be both read and written by its

owner (i.e., by processes in the owning VAS); otherwise the page can only be read

by its owners. An IPC page may be transferred from a source VAS to a destina­

tion VAS; the source loses an instance of ownership and the destination gains it.

A VAS may also duplicate its ownership of an IPC page, e.g., before sending the

page out.

Page ownership can also be viewed as a high-level VM map maintained by

the IPC_PAGE_MGR (whereas a VAS_MD object represents a low-level VM map).

The splitting of a VM map into two parts enables lazy remapping, a mechanism

that defers VM map changes whenever possible. Updating the low-level VM

map is more expensive than updating the high-level map, partly due to TLB syn­

chronization. With lazy remapping, a page is mapped into the low-level map by

the page fault handler only when it is referenced. Lazy evaluation saves a pair

of low-level map and unmap operations if a page is mapped into and out of a

VAS without being accessed, but incurs the extra overhead of a page fault if the

page is accessed. It is beneficial for applications that forward large amounts of

data, such as user-level file server and network server.

We now explain member functions of the !PC REGION MGR class (see

Table 5.3 for a summary). get owner ship () allocates a ne; IPC page to a

VAS. release_ ownership () releases an instance of ownership of an IPC

page from a VAS.

start_transfer () starts transferring an instance of IPC page ownership

from source_ vas to dest_ vas. It returns after the high-level VM maps have

been updated, but not necessarily after the low-level VM maps have been. When

ownership_only_flag is set, the low-level map is either updated using the

most CPU-inexpensive way, or simply ignored. The IPC REGION MGR keeps

track of the status of IPC pages, including what action has been taken on the

low-level VM map.

7 This differs from pure sharing. Each VAS still has a separate VM mapping, 10 the kernel can enforce

protection and aecurity on a VAS-by-VAS basis.

82

Table 5.3. Interface to the IPC_REGION_MGR class.

Member Functions Comments

get ownership (vas, virt addr _p) allocate a new !PC page

release ownership(vas, virt addr) free an IPC page

start_transfer(source_vas, dest_vas, start remapping a page

virt addr, ownership only fg)

finish transfer(source vas, virt addr) wait for completion of remapping

duplicate(vas, virt addr, flags) increase page ownership by one

make writable(vas, virt addr, new addr .E_) make the page writable

mapin (vas, virt addr, access) map into the low-level VM map

finish_transfer () is the counterpart of start_transfer () or
duplicate () (see the next function). It blocks until virt addr has been com­
pletely unmapped (including reprotection) from the lo;-level VM map of
source_ vas. If the corresponding start_transfer () has the
ownership_only_flag, it synchronously unmaps the page from the low-level
VMmap.

duplicate () increases the ownership of virt_addr in vas by one. If
the access right to the page was read/write, it is changed to read-only. flags,

same as that in start_ transfer(), specifies how the reprotection is done.
This function is also asynchronous; finish transfer() ensures that the
reprotection started by it is completed. -

make_writable () makes an IPC page writable. If the page has multiple
ownership, it is copied to a new page.

mapin () maps virt addr into the low-level VM map of vas for access.

By default, start transfer () does not map a page into the low-level VM map
of a VAS in order to exploit lazy evaluation. This function is called by the page
fault handler on the first reference to virt_addr, or to override lazy evaluation
on the receive operation.

5.3.4.5. Message-passing operations

User-level message-passing operations are essentially the same as intra­
kernel message-passing operations (see Section 5.3.1.2 and Table 5.1), except
that they are extended with

• mechanisms allowing user processes to invoke kernel member func­
tions across the user-kernel boundary, and

83

• semantic rules defining inter-VAS data movement, protection, and
trust.

This section describes both extensions (only the second one is related to manag­
ing TLB inconsistency).

To invoke a member function on a kernel message-passing object (MPO), a
user process uses (1) the user object reference (UOR) facility for referencing the
kernel MPO, and (2) the trap mechanism for passing control and parameters.
Each VAS has an associated set of UORs, small integers that act as capabilities
to kernel objects (see Figure 5.8). UORs are related to (but more general than)
UNIX file descriptors, Mach port capabilities, and so on. A message-passing
operation is started by loading arguments (including a UOR to an MPO) into
registers, and executing a trap instruction. Then the trap handler, after collect­
ing and checking arguments, invokes a member function on the target :MPO on
behalf of the user process.

We now describe the second extension--semantic rules for inter-VAS data
movement, protection, and trust. For simplicity, in the following discussion, a
sender refers to a user process that delivers a message using message-passing,

User virtual address spaces

DOD

Kernel virtual address space

Figure 5.8. User object reference tables. User processes use indices to

per-VAS UOR tables to reference kernel objects.

84

and a receiver refers to a user process that obtains a message. In some cases,

such as in request reply () a process can be the sender of a message and the

receiver of another message at the same time. We also use send operation and
receive operation in a similar way in our discussion.

A message may be transferred between V ASs in two modes, depending on

the duplicate flag set by the sender. When this flag is off, the sender loses all

data pages in the message and the receiver gains them. In other words, the

sender must not access these pages after the message-passing operation. When

this flag is on, both the sender and the receiver get a read-only copy of data

pages. (This is indicated by flag bits, one per page, in the message header).

Either one may then modify its own copy independently, but must inform the

kernel before doing so (using make writable() in Table 5.3). If a sender

violates the above semantic rules after sending out a message it will (1) generate
an exception, (2) damage the content of its own VAS, or (3) read incorrect data.

Note that the second transfer mode described above is functionally

equivalent to the copy-on-write mechanism, except that pages are copied via

explicit system calls rather than by the page fault handler (see Section 5.3.5 for

more discussion). Since user processes access messages via library routines, cal­

ling make_ writable () is transparent to user programs in most cases.

The kernel, in addition to enforcing the above rules, protects every user

VAS against memory accesses from processes running in other user V ASs.

Specifically, after a receiver has received a message (i.e., after the receive opera­

tion returns), the kernel guarantees that (1) no processes running in other V ASs

can modify the message, and (2) no processes running in other V ASs can read

the message beyond what they had already read. Therefore, if the message is

moved using VM remapping, the kernel must invalidate all stale TLB entries

that may be used to violate such protection. A receiver may simplify the kernel's

job by setting the trust flag in the receive operation. This indicates that the

receiver trusts the sender not to violate the sender's semantic rules, even when

illegal accesses may be granted because of the existence of stale TLB entries.

In addition to the above flags, the message-passing system takes hints. A

sender may set the trust hint flag, indicating that it believes the receiver will

trust it. This flag is useful-when the send operation precedes the corresponding

receive operation. If the hint is incorrect, the OS can still do necessary work

before the receive operation returns, though the latency of the receive operation

will be longer . A receiver may set the irranediate use flag (separate bits for

read and write), indicating that it will access the received data. The system uses

this flag to turn off lazy evaluation (see Section 5.3.4.4) to save a page fault.

5.3.4.6. Managing TLB inconsistency

This section explains how user-level message-passing operations and

parameters are translated into functions on the IPC_REGION_MGR class, and

how TLB inconsistency is handled.

85

An IPC page is always remapped in two steps. A send operation starts
page remapping by calling start_transfer {). The ownership_only_flag

of this function is determined by the trust flag of the corresponding receive

operation if it precedes the send operation. Otherwise the
ownership only flag is determined by the trust hint flag of the send
operations.- sta;-t_transfer () may trigger non-blocking TLB synchroniza­
tion; the kernel can do other work, such as waking up and rescheduling the
corresponding receiver, while the remapping is in progress. Such asynchrony is
very useful on a multiprocessor because it allows TLB synchronization and
scheduling to be done concurrently.

A receive operation, when its trust flag is false, calls
finish transfer{) before it returns to ensure that all IPC pages in the
received- message have been properly remapped. This call is skipped if the
trust flag is true. If the immediate use flag is true, a receive operation calls
mapin () to turn off lazy evaluation.

Our design reduces the needs for TLB synchronization in two ways:

• With receiver's trust, updating the low-level VM map of the sender's
VAS becomes unnecessary (reflected by the ownership_only_flag

flag). Although the VM system no longer acts as a firewall, the correct­
ness of the system is guided by the semantic rules of the message­
system, which forbids a sender to take advantage of stale TLB entries.

• By exploiting lazy evaluation, the kernel avoids as much as possible
updating low-level VM maps and consequently avoids synchronizing
TLBs. Lazy evaluation causes inconsistency between the high-level and
low-level VM maps. Such inconsistency is similar to the safe TLB incon­
sistency discussed in Section 5.1.1, because low-level maps always allow
more restricted access rights than the corresponding high-level maps.

When TLB synchronization is necessary, we do it efficiently by exploit asyn­
chrony. We overlap the latency of a TLB synchronization operation with the
delay between a send and the corresponding receive operation. Thus, we can
either reduce the overall message-passing latency, or use more CPU-efficient
TLB synchronization algorithms (such as the optimistic-synch algorithm). Asyn­
chrony may cause transient TLB inconsistency. But as stated in Section 5.1.2,
such inconsistency is harmless as long as it is removed before the receive opera­
tion returns.

5.3.5. Mechanisms not suitable for tolerating TLB inconsistency

In addition to paging and message-passing, many systems remap memory
pages under the copy-on-write mechanism [ABB86, BBM72, RTY88]. This sec­
tion explains why we do not have a design that tolerates TLB inconsistency
under this mechanism, and sketches alternatives.

It is hard to tolerate TLB inconsistency if a VM mechanism requires the

• I

86

operating system to generate a fault on a legal8 memory reference. Copy-on­

write is such an example. Although a write reference to a copy-on-write page is

legal, it must generate a protection fault. When a page is reprotected as copy­

on-write {i.e., reprotected from read/write to read-only), all stale TLB entries

allowing write access to this page must be invalidated. Otherwise, subsequent

write references might not generate a page fault, breaking the copy-on-write

mechanism. Further, it is difficult to establish semantic rules to prevent a user

from making memory references that may use stale TLB entries, because writing

to a copy-on-write page is legal.

Therefore, copy-on-write is not necessarily beneficial for shared memory

multiprocessors or for machines with virtually tagged caches9, considering the

high overhead of TLB synchronization. Nelson et al. also pointed out the high

overhead of implementing copy-on-write on machines with virtually tagged

caches, and proposed a revised scheme called COR-COW [Ne088].

DASH does not support copy-on-write at all. Instead, it provides other

mechanisms to speed up process creation, the most important usage of copy-on­

write in existing UNIX-like systems. First, DASH has a different process crea­

tion paradigm that reduces the need for copying a whole VAS. It allows multiple

processes to run in the same VAS. Most processes are created in an existing

VAS, rather than in a separate new VAS containing the same memory image as

the parent process. In DASH, a new VAS is usually created as an empty address

space. Second, the shared-segment facility supports read-only sharing among

different V ASs, reducing the overhead of copying program text into every VAS.

See [Gov89] for details of this facility.

1 Legal means the reference is allowed by the high-level mapping of the VAS.

' A virtually tagged cache can be viewed as a distributed TLB; aee Section 2.3.

;

Chapter 6

Related Work

This chapter reviews related work in three areas: software mechanisms for
TLB consistency, hardware mechanisms for TLB consistency, and performance
evaluation of TLB synchronization.

6.1. Software Mechanisms

The performance of TLB synchronization mechanisms is not critical in most
commercial shared-memory multiprocessors, because they typically have a small
number of processors (10 to 20) and remap pages at a low rate. Their operating

systems, most of which are UNIX-based, reduce1 the access rights to a page only
on page replacement and virtual address space (VAS) shrinking; they do not use
remapping to move data between V ASs. The paging rate is low if the system has
sufficient physical memory; the frequency of VAS shrinking is also low. More
important, the latency of these operations is not critical. Hence most systems
achieve TLB consistency with reasonable CPU overhead simply by hatching TLB
synchronization operations together [FHM87]. The optimistic-asynch algorithm
evaluated in Chapter 4 represents this technique.

The MIPS multiprocessor system employs an extra technique to manage
TLBIDs, VAS identifiers associated with TLB entries [MMM86, TBJ88]. The

operating system does not flush the entire TLB on context switches. It allows a
processor to retain TLB entries for V ASs other than the currently active one.
For determining which processors might contain a stale TLB entry for a target
PrE, the operating system keeps track of the migration history of V ASs in per­
space hi tmaps. This technique is useful for machines that support V ASs
identifiers either in caches or in TLBs. The operating system also manages
other details such as the overflow of VAS identifiers. The MIPS system loads
TLB entries by software, so the TLB synchronization algorithm is simpler than
in the general case (see Chapter 3 and Table 3.1).

Synchronizing virtually tagged caches on page remapping (which is
equivalent to synchronizing TLBs) could be expensive. Cheng measured the
overhead of flushing the virtually tagged cache on Sun-3 Series 200 workstations
running Sun OS [Che87]. Depending on the application, the percentage of total
CPU time spent on cache flushing ranges from 0.13% to 3%. Nelson and
Ousterhout also pointed out the performance problem of flushing virtually
tagged caches in implementing copy-on-write, and proposed an improved COW­
COR mechanism [Ne088]. The latency of TLB synchronization is important for

1 Increasing access rights to a page is safe, and is thus ignored here.

87

88

copy-on-write2, so it is not appropriate to defer operations as in page replace­

ment. Section 5.3.5 discusses copy-on-write further.

Mach is the first system that uses the 2-phase TLB synchronization algo­

rithm, or the TLB shootdown algorithm in their terminology [BRG89]. Black et

al. measured the performance of this algorithm on a 16-processor Encore Mul­

timax, and concluded that this algorithm would perform well even for systems

containing hundreds of processors. However, all the applications that they have

measured caused less than 0.5 TLB synchronization operations per processor per
second. Hence our work and theirs address the same problem but for different

workloads; we emphasize scalability but they do not. An earlier paper on the

Mach VM system also mentioned allowing temporary TLB inconsistency in cases

where it does not cause problems (e.g., when protection is being increased)

[RTY88]. This technique corresponds to tolerating safe TLB inconsistency in our
work (see Section 5.1.1).

Rosenburg proposed a simpler TLB synchronization algorithm for a Mach

port onto the IBM RP3 [EGL85, PBG85, Ros89]. This algorithm is similar to the

PrE-first algorithm described in Section 3.2.2. RP3 processors do not write dirty
or referenced bits back to PTEs. (The operating system obtains such information

by initially turning off the valid bit to cause a page fault on the first reference.)

In other words, a newly updated PTE will never be overwritten as a result of set­

ting status bits. Consequently, it is not necessary to stall processors as in the 2-

phase algorithm, and the TLB synchronization algorithm becomes much simpler.

Rosenburg reported performance improvements of his algorithm over the 2-
phase algorithm.

6.2. Hardware Mechanisms

MIPS-X-MP avoids the TLB inconsistency problem by using a centralized

TLB [ChH87, HeH86]. Without multiple TLBs, changing virtual memory map­

ping is as straightforward as in a uniprocessor. This solution, although simple,

does not scale well because the centralized TLB would become a bottleneck when

the number of processors is large. The Stellar graphics minisupercomputer, a

commercial system with a small number of processors, also takes this approach.

SPUR eliminates separate TLBs by using an in-cache address translation

mechanism [Rit85, TzS85, WEG86]. With virtually tagged caches, virtual-to­

physical address translation is not needed on a cache hit. Therefore, separate

TLBs are no longer critical to the system's performance. The system treats page

tables as regular data and caches them in data caches. When a PrE is modified,

the cache coherency mechanism ensures that all cached copies of that PrE are

consistent, achieving "free" PTE coherency. However, as explained in Section

2.3, every cache line stores some information in the corresponding PTE, at least

protection bits. Hence this approach does not solve the TLB inconsistency

1 For example, in UNIX fork (),neither the parent nor the child process can continue before TLB syn­

chronization is completed. Otherwiae, the parent process might write to a page without causing a page fault.

89

problem; it eliminates separate TLBs, but turns every cache line into a distri­

buted TLB entry. Nelson and Ousterhout also pointed out the problem of virtu­

ally tagged caches [Ne088].

The Motorola MC88200 cache and memory management unit (CMMU) can

be directly controlled by multiple MC88100 CPUs, or even by other CMMUs

LMMM88a, MMM88b]. The control registers of each CMMU occupy 4K of the

control memory space, and can be accessed by any CPU via regular memory

references. Thus, a single CPU can flush the TLB entries on all CMMUs

without interrupting other CPUs. This approach potentially simplifies TLB syn­

chronization, although concurrency control for the control memory space is still

necessary.

In the IBM System./370 architecture, a processor broadcasts a hardware

TLB invalidation signal to all processors on an instruction that updates a PTE

[Liu89]. The instruction does not complete until all TLBs have been synchron­

ized. This scheme greatly simplifies the software at the expense of hardware

complexity. However, a broadcast-based mechanism often causes contention in

the interconnection network when the number of processors is large [PfN85].

(System/370 currently includes configurations with no more than 6 processors.)

To be scalable, this scheme could be extended to incorporate techniques used in

scalable cache-coherent multiprocessors, such as directory-based invalidation

[ASH88, WeG89]. However, the hardware expense would be high.

Teller et al. proposed three hardware mechanisms for TLB consistency in

highly parallel machines [TKS88]. The first solution is to lock a PTE using a

hardware reference count, which represents the number of processors having the

PTE loaded in their TLBs. The hardware allows a PTE to be modified only when

its reference count is zero. This is a passive solution-it does not remove stale

TLB entries when the software needs to update a PTE, but restricts what PrEs

the software can update. It also limits the size of TLBs; if the total number of

TLB entries (size of a TLB times the number of processors) is larger than the

total number of physical pages, the operating system might find every PTE in a

TLB entry (i.e., every physical page locked).

Teller's second solution is to use version numbers, similar to the idea used

in [Smi86] and [Emb87] for multiprocessor cache coherency. Each physical page

is associated with a version number stored in a special table in the memory sub­

system. For a processor, the version number of a page is treated as part of the

physical address of the page; it is loaded into the TLB with the physical address

and it sent out on a memory reference. When the operating system updates a

PTE, it also increases the corresponding version number stored in the memory

subsystem. A subsequent memory reference based on a stale TLB entry can be

detected by comparing the version number stored in the memory subsystem and

that sent out by the processor. This solution increases processor to memory

traffic for sending version numbers, uses extra memory for storing version

numbers, and requires a more complicated and hence potentially slower memory

subsystem. Moreover, this scheme makes caching difficult. If the cache does not

90

store version numbers at all, a memory reference based on a stale TLB entry
may get a cache hit. Similarly, if the cache does store version numbers but the
operating does not invalidate the cache when it updates a PTE, a memory refer­
ence based on a stale TLB entry may still get a cache hit.

Teller's third solution is to translate addresses in the memory subsystem
instead of in processors. This solution has the effect of a centralized TLB as in
MIPS-X-MP, except that it distributes address translation information to multi­
ple memory modules and potentially allows parallel translations. However, this
solution prohibits data caches. Since address translation is done outside proces­
sors, a data cache local to a processor must be a virtually tagged cache. As

stated before, a virtually tagged cache stores PrE information (such as protec­
tion bits) in every cache line. The TLB inconsistency problem remains unsolved
if the system has virtually tagged caches.

6.3. Performance Evaluation

The idea behind the iterative method that we use for performance analysis
is not new. Since the theme of this work in not performance analysis methodol­
ogy, we review only one representative book in this area. Agrawal surveyed and
classified a number of approximation methods, cataloged a number of useful
model transformations, characterized iterative solution procedures, and gave
theorems about their convergence [Agr85]. He also identified the underlying
modeling process and provided tools and techniques for model development.

Synchronizing TLBs is similar to updating replicated data in a distributed
environment. Lee and Garcia-Molina both used an M/G/1 queueing model for
this problem [Gar81, Lee80]. They assumed that the arrival of update requests
is independent of the state of the system, and is a Poisson process. They then
calculated the synchronization time and service time for different algorithms and
applied them to the M/G/1 model. Our performance model, on the other hand, is
a closed system. It is more realistic, especially when the system is saturated,
but is more difficult to analyze.

There are a large number of simulation languages and packages, such as
GPSS [BKP76, Sch74], SIMSCRIPT 11.5 [MKV87], SLAM [Pri86], INSIGHT
[Rob83], and SIMAN [Peg82]. We do not use any of them. Instead, we combine
the recently developed Berkeley Interactive Statistical Systems (BLSS) with our
own simulation engines written in C [AbR88]. The C engines take raw input
traces and produce raw output traces; the BLSS generates input traces and
analyzes output traces. This approach exploits the power of BLSS to simplify
programming. It also takes advantage of the efficiency and flexibility of C to
simulate complex algorithms that involve deadlock avoidance and processor
interaction. Moreover, our simulators can be used for trace-driven simulation
without writing extra programs.

Chapter 7

Concluding Remarks

This chapter concludes the dissertation. Section 7.1 lists its main contribu­
tions. Section 7.2 summarizes the major results. Section 7.3 discusses direc­
tions in which this research might be extended.

7.1. Contributions

This dissertation makes the following contributions to the research on
software mechanisms for multiprocessor TLB consistency.

• It shows that TLB inconsistency is a fundamental problem in shared­
memory multiprocessors. The problem exists when page table informa­
tion is replicated, either in separate TLBs or in virtually tagged caches.

• It develops optimistic TLB synchronization algorithms that are more
CPU -efficient than the 2-phase algorithm used by other systems.

• It analyzes and simulates the performance of TLB synchronization algo­
rithms, showing that none of the algorithms evaluated scale well.

• It proposes a combined virtual memory system and message-passing
system design that efficiently exploits virtual memory remapping by
tolerating TLB inconsistency.

The next section develops these points, summarizing the major results of the

dissertation.

7.2. Summary of Results

TLB inconsistency is a fundamental problem in shared-memory multipro­

cessors. It is different from the well-known cache inconsistency problem. TLB
inconsistency occurs when meta-data (i.e., the mapping of data) is changed,
while cache inconsistency occurs when data is changed. Although virtually
tagged caches eliminate the need for separate TLBs, they do not eliminate the
TLB inconsistency problem. Virtually tagged caches store page table informa­
tion, such as protection bits, in every cache line. Such information, when

updated, causes a meta-data inconsistency problem that is equivalent to the TLB
inconsistency problem. Consequently, TLB inconsistency should be defined,
more precisely, as inconsistency among different copies of page table informa­

tion.

Algorithms for synchronizing TLBs resemble, but are more complex than,

those used by database systems to update replicated data. The main difference
is in handling concurrency. It is difficult to implement software locking at the
level of memory references; a processor does not check a software lock when

91

92

making a memory reference, which implicitly uses a TLB entry. The 2-phase

algorithm implements locking by stalling processors. The optimistic algorithms

do not stall processors, but may require more than one round, and provide

weaker consistency semantics than the 2-phase algorithms. Hardware TLB

characteristics also affect TLB synchronization algorithms. The algorithms are

simpler if (1) the status bits (dirty and referenced) of page table entries are set

atomically, or (2) TLB entries are loaded by software via traps.

It is difficult to analyze TLB synchronization algorithms as queueing net­

works because some algorithms involve interaction, such as blocking, among pro­

cessors. Instead, we obtain approximations using a computationally efficient

iterative analysis method, the accuracy of which is verified by simulation results.

The performance results show that the evaluated algorithms are CPU-bound in

extreme cases, and that the optimistic-synch and optimistic-asynch algorithms

are much more CPU-efficient than the 2-phase algorithm. More important, TLB

synchronization algorithms perform well only under light workloads (such as

paging in a system with large physical memory and a small number of proces­

sors); they do not scale well with the rate of TLB synchronization operations,

with the number of processors, or with the overhead of flushing a TLB entry.

This suggests the need for avoiding TLB synchronization under high workloads.

We propose an integrated system design that tolerates TLB inconsistency.

We first identify three types of tolerable TLB inconsistency (safe, transient and

trusted), and then develop mechanisms that tolerate them. In short, the design

reduces the needs for TLB synchronization by exploiting trust relationships and

lazy remapping. When TLB synchronization is necessary, the design does it

efficiently by exploiting asynchrony. The design tolerates TLB inconsistency in

paging and in message-passing. There is no good mechanism for tolerating TLB

inconsistency in the copy-on-write mechanism. We explain why this is difficult,

and show alternatives to copy-on-write. The design is part of the DASH experi­

mental operating system. It has been implemented and measured on Sun 3/50

workstations.

The design, particularly for message-passing, spans various components of

the operating system-from the low-level virtual memory system up to the

semantic rules of inter-address space trust. This approach illustrates an impor­

tant principle of system design: an integrated solution to a problem is often more

efficient than a local solution. This principle has been applied to other systems

areas. For example, the MIPS processor [GHP88, HJP82, HJB83] does not solve

the pipeline interlocking problem purely by hardware but integrates it with the

compiler. Our design is more scalable than those used in other systems because

it does not confine the TLB inconsistency problem to hardware or even to the

machine-dependent part of the virtual memory system. Finally, our design fits

well into the software structure of operating systems, demonstrating that an

integrated solution does not necessarily violate software layering.

93

7.3. Future Work

This work can be extended in two directions: implementation and perfor­
mance evaluation. Relative to implementation, the design for tolerating TLB
inconsistency (Chapter 5) has not been implemented in a shared-memory mul­
tiprocessor. Many multiprocessor-specific details, such as inter-processor inter­
rupting, are either not exercised or not implemented at all. We need to gain

implementation experience to find out whether the design has flaws or missing
components. We also need to implement different TLB synchronization algo­

rithms and measure their performance to verify our performance predictions.
Further, we need to build application programs to examine how easy it is to pro­
gram on top of our system design, and to gain experience with the workload of
virtual memory remapping.

The performance evaluation part of the dissertation can be extended by ver­
ifying our assumptions and models, and by evaluating more performance
metrics. This research assumes that all interarrival times and service times are
exponentially distributed. This assumption makes the analysis tractable but is
not necessarily realistic. Future research can examine the validity and accuracy
of this assumption by exercising the simulators with different distributions and
comparing the results.

Future research could also be directed at extracting parameters for our per­
formance model from real systems, and comparing the analytic and simulation
results with the measured results. Moreover, future research could drive the
simulators with real traces, and compare the results with those derived from sto­
chastic workloads. Such comparisons will show how closely our performance
model represents real systems.

Although the iterative analysis method converges for all reasonable values
of the parameters we have chosen, future research should formally study its con­
vergence, e.g., show under what conditions it converges.

Future research should also evaluate more performance metrics, such as
the duration of interrupt-disabled time due to TLB synchronization. Often, the
maximum time is more important than the average time because it determines
whether critical external events might get lost. It is important to obtain not only
mean values but also higher-order moments, if not distributions, of performance
me tries.

Finally, future research could investigate the effect of TLB synchronization
on cache and bus performance. As stated in Section 2.3, machines with virtually
tagged caches have an equivalent TLB synchronization problem. When a page is
remapped, all cache lines on all processors containing stale PTE information,
such as protection bits, must be flushed. Therefore, in addition to the CPU over­
head and latency we have taken into account, virtual memory remapping may
affect future cache miss rates, and may even cause bus contention if all proces­
sors flush their caches concurrently [MBC86]. The effect of context switches on
cache footprints and startup overhead has been studied [ThS87]. Since virtual

• I

94

memory remapping has a similar effect, it deserves similar attention.

Bibilography

[AbR88] D. M. Abrahams and F. Rizzardi, BLSS: The Berkeley Interactive
Statistical System, W. W. Norton, Inc. , New York, 1988.

[ABB86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian
and M. Young, "Mach: A New Kernel Foundation for UNIX
Development", Proceedings of the 1986 Summer USENIX
Conference, Atlanta, Georgia, June 9-13, 1986, 81-92.

[ASH88] A. Agarwal, R. Simon, J. Hennessy and M. Horowitz, "An
Evaluation of Directory Schemes for Cache Coherency", Proceedings
of The 15th Annual International Symposium on Computer
Architecture, Honolulu, Hawaii, May 1988, 280-289.

[Agr85] S. C. Agrawal, Metamodeling: A· Study of Approximations in
Queueing Models, The MIT Press, Cambridge, Massachusetts, 1985.

[AnF86] D. P. Anderson and D. Ferrari, "The DASH Project", ACM SIGOPS
Workshop on Distributed Systems, Amsterdam, Sep. 1986.

[AFR87] D.P. Anderson, D. Ferrari, P. V. Rangan and S. Tzou, ''The DASH
Project: Issues in the Design of Very Large Distributed Systems",
Technical Report No. UCB/CSD 87/338, Computer Science Div.,
EECS Dpt., Univ. of Calif. at Berkeley, Jan. 1987.

[And88] D. P. Anderson, "A Software Architecture for Network
Communication", Proc. of the 8th International Conference on
Distributed Computing Systems, San Jose, California, June 1988.

[ATG88] D. P. Anderson, S. Tzou and G. S. Graham, "The DASH Virtual
Memory System", Technical Report No. UCB/CSD 88/461,
Computer Science Div., EECS Dpt., Univ. of Calif. at Berkeley, Nov.
1988.

[AnT88] D. P. Anderson and S. Tzou, "The DASH Local Kernel Structure",
Technical Report No. UCB/CSD 88/463, Computer Science Div.,
EECS Dpt., Univ. of Calif. at Berkeley, Nov. 1988.

[AnF88] D. P. Anderson and D. Ferrari, ''The DASH Project: An Overview",
Technical Report No. UCB/CSD 88/405, Computer Science Div.,
EECS Dpt., Univ. of Calif. at Berkeley, Feb. 1988.

[A'IW89] D. P. Anderson, S. Tzou, R. Wahbe, R. Govindan and M. Andrews,
"Support for Continuous Media in the DASH System", Technical
Report No. UCB/CSD 89/537, Computer Science Div., EECS Dpt.,
Univ. of Calif. at Berkeley, Oct. 1989.

[BaJ81] 0. Babaoglu and W. Joy, "Converting a Swap-Based System to do
Paging in an Architecture Lacking Page-Reference Bits", Proc. of
the 8th ACM Symp. on Operating System Prin., Pacific Grove,

95

• I

96

California, Dec. 14-16, 1981, 78-86.

[Bas85] E. Basart, "The Ridge Operating System: High Performance
through Message-Passing and Virtual Memory", Proc. of the IEEE
1st International Conf on Computer Workstations, San Jose,
California, Nov. 11-14, 1985, 134-143.

[BKT87] B. Beck, B. Kasten and S. Thakkar, "VLSI Assist For A
Multiprocessor", Proc. Second International Conf on Architectural
Support for Programming Languages and Operating Systems, Palo
Alto, Californic, Oct. 5-8, 1987, 10-20.

[BeG81] P. A. Bernstein and N. Goodman, "Concurrency Control in

Distributed Database Systems", ACM Computing Surveys 13, 2
(June 1981), 185-221.

[BHG87] P. A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency
Control and Recovery in Database Systems, Addison Wesley,
Reading, MA, 1987.

[BRG89] D. L. Black, R. F. Rashid, D. B. Golub, C. R. Hill and R. V. Baron,
"Translation Lookaside Buffer Consistency: A Software Approach",
Proc. Third International Conf on Architectural Support for
Programming Languages and Operating Systems , Boston,
Massachusetts, Apr. 3-6, 1989, 113-122.

[BKP76] P. A. Bobillier, B. C. Kahan and A. R. Probst, Simulation with
GPSS and GPSS IV, Prentice-Hall, Englewood Cliffs, NJ, 1976.

[BBM72] D. G. Bobrow, J. D. Burchfiel, D. L. Murphy and R. S. Tomlinson,
"TENEX, a Paged Time Sharing System for the PDP-10", Comm. of
the ACM 15, 3 (Mar. 1972).

[BKN89] W. R. Byrne, T. A. Kilm, B. L. Nelson and M. D. Soneru,
"Broadband ISDN Technology and Architecture", IEEE Network,
Jan. 1989, 23-28.

[CHK88] L. F. Cabrera, E. Hunter, M. Karels and D. Mosher, "User-Process
Communication Performance in Networks of Computers", IEEE
Trans. on Software Eng. 14, 1 (Jan 1988), 38-53.

[ChM88] A. Chang and M. F. Mergen, "801 Storage: Architecture and
Programming', Trans. Computer Systems 6, 1 (Feb. 1988).

[Che87] R. Cheng, "Virtual Address Cache in UNIX", Proceedings of the
1987 Summer USENIX Conference, Phoenix, Arizona, June 8-12,
1987, 217-224.

[ChZ83] D. R. Cheriton and W. Zwaenepoel, ''The Distributed V Kernel and
its Performance for Diskless Workstations", Proc. of the 9th ACM
Symp. on Operating System Prin., Bretton Woods, New Hampshire,
Oct. 10-13, 1983, 128-140.

[Che84] D. R. Cheriton, ''The V Kernel: a Software Base for Distributed

Systems", IEEE Software 1, 2 (Apr. 1984), 19-43.

[CSB86] D. R. Cheriton, G. A. Slavenburg and P. D. Boyle, "Software­
Controlled Caches in the VMP Multiprocessor", Proc. 13th Int.

97

Symp. of Computer Architecture, June 1986, 366-374.

[CGB89] D. R. Cheriton, H. A. Goosen and P. D. Boyle, "Multi-level Shared

Caching Techniques for Scalability in VMP-MC", Proc. of The 16th

Annual International Symposium on Computer Architecture,

Jerusalem, Israel, May-June 1989, 16-24.

[ChH87] P. Chow and M. Horowitz, "Architecture Tradeoff's in the Design of

MIPS-X", Proc. of the 14th Annual International Symposium on

Computer Architecture, Pittsburgh, Pennsylvania, June 2-5, 1987.

[EGL85] J. Edler, A. Gottlieb and J. Lipkis, "Considerations for Massively

Parallel UNIX systems on the NYU Ultracomputer and the mM

RP3", Proceedings of the 1985 Winter USENIX Conference, Dallas,
Texas, January 23-25, 1985, 193-210.

[Emb87] D. R. Emberson, "A Cache Coherence Management Technique for

Hypercube Multiprocessors", Proc. of the 1987 International Conf

on Paralleling Processing, Aug. 1987, 262-265.

[Ens74] P. H. Enslow, ed., Multiprocessors and Parallel Processing, John

Wiley & Sons, New York, NY, 1974.

[FHM87] S. J. Farnham, M. S. Harvey and K. D. Morse, "VMS

Multiprocessing on the VAX 8800 System", Digital Technical

Journal, Feb. 1987, 111-119.

[Fit86] R. P. Fitzgerald, A Performance Evaluation of the Integration of

Virtual Memory Management and Inter-Process Communication in

Accent, Ph.D. Dissertation, Carnegie-Mellon University, Oct. 1986.

[FiR86] R. Fitzgerald and R. Rashid, "The Integration of Virtual Memory

Management and lnterprocess Communication in Accent", Trans.

Computer Systems 4, 2 (May 1986), 147-177.

[GaP85] D. D. Gajski and J. Peir, "Essential Issues in Multiprocessor

Systems", IEEE Computer, June, 1985, 9-28.

[Gar81] H. Garcia-Molina, Performance of Update Algorithms for Replicated

Data, UMI Research Press, Ann Arbor, Michigan, 1981.

[GMS87] R. A. Gingell, J. P. Moran and W. A. Shannon, "Virtual Memory

Architecture in SunOS", Proceedings of the 1987 Summer USENIX

Conference, Phoenix, Arizona, June 8-12, 1987, 81-94.

[Goo87] J. R. Goodman, "Coherency for Multiprocessor Virtual Address

Caches", Proc. Second International Con(. on Architectural Support

for Programming Languages and Operating Systems, Palo Alto,

Californic, Oct. 5-8, 1987, 72-81.

[GoW88] J. R. Goodman and P. J. Woest, "The Wisconsin Multicube: A New

Large-scale Cache-coherent Multiprocessors", Proceedings of The

15th Annual International Symposium on Computer Architecture,

Honolulu, Hawali, May 1988, 422-431.

[GVW89] J. R. Goodman, M. K. Vernon and P. J. Woest, "Efficient

Synchronization Primitives for Large-scale Cache-coherent

Multiprocessors", Proc. Third International Con(. on Architectural

98

Support for Programming Languages and Operating Systems ,
Boston, Massachusetts, Apr. 3-6, 1989, 64-73.

[Gov89] R. Govindan, "Read-only Sharing in Operating Systems", U.C.

Berkeley, Masters's Report, Nov 1989.

[GHP88] T. Gross, J. Hennessy, S. Przybylski and C. Rowen, "Measurement
and Evaluation of the MIPS Architecture and Processor", Trans.
Computer Systems 6, 3 (Aug. 1988), 229-257 .

[HMS88] R. Haskin, Y. Malachi, W. Sawdon and G. Chan, "Recovery
Management in QuickSilver", Trans. Computer Systems 6, 1 (Feb.
1988), 82-108.

[HJP82] J. Hennessy, N. Jouppi, S. Przbyski, C. Rowen, T. Gross, F. Baskett
and J. Gill, "MIPS: A Microprocessor Architecture", 15 Annual
Workshop on Microprogramming, Oct. 1982, 17-22.

[HJB83] J. Hennessy, N. Jouppi, F. Baskett, T. Gross and J. Gill,
"Hardware/Software Tradeoffs for Increased Performance", Proc.
first International Con(. on Architectural Support for Programming
Languages and Operating Systems, Mar. 1983,33-54.

[HeH86] J. L. Hennessy and M.A. Horowitz, "An Overview of the MIPS-X­
MP Project", Technical Report STANCSL 86-300, Computer
Systems Laboratory, Stanford Univ., Apr. 1986.

[Hil86] M. Hill, "Design Decisions in SPUR", IEEE Computer, Nov. 1986,
8-22.

[Hil87] M. D. Hill, Aspects of Cache Memory and Instruction Buffer
Performance, Ph.D. Dissertation, Technical Report No. UCB/CSD
87/381, Nov. 1987.

[III88] N10 Programmer's Reference Manual, Preliminary Draft 2.4, Intel,
Apr. 1988.

[KaC88] H. Kanakia and D. R. Cheriton, "The VMP Network Adapter Board
(NAB): High-Performance Network Communication for
Multiprocessors", Proc. of ACM SIGCOMM 88, Palo Alto, Calif.,
Aug. 1988, 175-187.

[Kle75] L. Kleinrock, Queueing Systems, Volume I: Theory, Johe Wiley &
Sons, Inc., 1975.

[Kle76] L. Kleinrock, Queueing Systems, Volume II: Computer Applications,
John Wiley & Sons, 1976.

[~e60] F. F. Lee, "Study of 'Look Aside' Memory", IEEE Trans. on
Computers 18, 11 (Nov. 1960), 1062-1064.

[Lee80] C. Lee, "Queueing Analysis of Global Locking Synchronization
Schemes for Multicopy Databases", IEEE Trans. on Computers c 29,
4 (May 1980), 371-384.

[Lei88] B. Leiner, editor. "Critical Issues in High Bandwidth Networks",
DARPA Internet RFC 1077, Nov. 1988.

[LeL82] H. M. Levy and P. H. Lipman, "Virtual Memory Management in the
VAXNMS Operating System", IEEE Computer, Mar. 1982, 35-41.

[Liu89]

[MKV87]

[MBC86]

[Mey85]

[MMM86]

[MMM88a]

[MMM88b]

[Ne088]

[0CD88]

[Peg82]

[PfN85]

[PBG85]

[Pri86]

[PHH88]

[R.S83]
[RTY88]

[Ras89]

99

L. Liu, Private communication, IBM Yorktown Research Center,
Sep. 1989.
H. M. Markowitz, P. J. Kiviat and R. Villanueva, SIMSCRIPT 11.5
Programming Language, CACI, Los Angelos, CA, 1987.

M. A. Marsan, G. Balbo and G. Conte, Performance Models of
Multiprocessor Systems, The MIT Press, Cambridge,
Massachusetts, 1986.
E. L. Meyer, "Survey of multiprocessors", VLSI Systems Design 6,
11 (November 1985), 30-39.

MIPS System Programmer Guide, Mips Computer Systems, Inc.,
Mountain View, CA, 1986.

MC88100 User's Manual, Revision 0.6, Motorola Microprocessor
Group, Apr. 1988.
MC88200 User's Manual, Revision 0.4 Preliminary Copy, Motorola
Microprocessor Group, Apr. 1988.

M. Nelson and J. Ousterhout, "Copy-on-Write for Sprite",
Proceedings of the 1988 Summer USENIX Conference, San
Franscisco, CA, June 20-24, 1988, 187-202.

J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson and B. Welch,
"The Sprite Network Operating System", IEEE Computer 21, 2
(Feb. 1988), 23-36.

C. D. Pegden, Introduction to SIMAN, System Publishing
Corporation, 1982.

G. A. Pfister and V. A. Norton, "Hot Spot Contention and
Combining in Multistage Interconnection Networks", Proc. of the
1985 Intl. Conf on Parallel Processing, 1985, 790-797.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J.
Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. Norton and J.
Weiss, "The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture", Proc. of the 1985 Intl. Conf on
Parallel Processing, 1985, 764-771.

A. A. B. Pritsker, Introduction to Simulation and SLAM II, 3rd Ed.,
System Publishing Corporation, 1986.

S. Przybylski, M. Horowitz and J. Hennessy, "Performance
Tradeoffs in Cache Design", Proceedings of The 15th Annual
International Symposium on Computer Architecture, Honolulu,
Hawaii, May 1988, 290-298.

R.Suri, "Robustness of Queueing Networks", J. ACM, July 1983.

R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W.
Bolosky and J. Chew, "Machine-Independent Virtual Memory
Management for Paged Uniprocessor and Multiprocessor
Architectures", IEEE Trans. on Computers, Aug. 1988,896-908.

R. Rashid et al., "MACH: A foundation for Open Systems", The
Second Workshop on Workstation Operating Systems, Pacific Grive,

[Rit85]

[Rob83]

[Ros89]

[Ros86]

[Sat80]

[Sch74]

[SS887]

[Smi82]

[Smi86]

[Sto85]

[SKP88]

[Str86]

[Sul90]

[SS885]

[TKS88]

[ThS87]

[TBJ88]

100

CA, Sep. 27-29, 1989.
S. A. Ritchie, "TLB for Free: In-Cache Address Translation For a
Multiprocessor Workstation", Technical Report No. UCB/CSD
85/233, Computer Science Div., EECS Opt., Univ. of Calif. at
Berkeley, May 1985.
S. D. Roberts, Simulation Modeling and Analysis with INSIGHT,
Regenstrief Institute. Distributed by SysTech, Inc., Indianapolis,
Indiana.
B. S. Rosenburg, "Low-Synchronization Translation U>okaside
Buffer Consistency in Large-Scale Shared-Memory
Multiprocessors", Proc. of the 12th ACM Symp. on Operating
System Prin., Litchfield Park, Arizona, 1989, 137-146.

F. E. Ross, "FDDI- A Tutorial", IEEE Communications Magazine,
May 1986, 10-15.

M. Satyanarayanan, Multiprocessors: A Comparative Study,
Prentice-Hall, Englewood Cliffs, NJ, 1980.

T. J. Schriber, Simulation Using GPSS, John Wiley & Sons, NY,
1974.
Symmetry Technical Summary, Sequent Computer Systems, Inc.,
1987.
A. J. Smith, "Cache Memories", Computing Surveys 14, 3 (Sep.
1982), 4 73-530.
A. J. Smith, "Software Cache Consistency Control Using "One Time
Identifier"", Technical Report No. UCB/CSD 86/290, Computer
Science Div., EECS Opt., Univ. of Calif. at Berkeley, Apr. 1986.

M. Stonebraker, "Virtual Memory Transaction Management",
Operating Systems Review 19, 2 (Apr. 1985), 8-16.

M. Stonebraker, R. Katz, D. Patterson and J. Ousterhout, "The
Design of XPRS", Proc. 14th Intl. Conf on Very Large Data Bases,
Aug. 1988, 318-330.

B. Stroustrup, The C++ Programming Language, Addison-Wesley,
1986.
M. Sullivan, "Software Fault Tolerance in Highly Available
Database Systems", Technical Report, University of
California/Electronics Research Lab, To appear, Jan. 1990.

Sun-3 Architecture Manual, Version 2.0, Sun Microsystems Inc.,
July 1985.
P. J. Teller, R. Kenner and M. Snir, ''TLB Consistency on Highly­
Parallel Shared-Memory Multiprocessors", Proc. 21st Annual
Hawaii Intl. Conf on System Sciences, 1988, 184-193.

D. Thiebaut and H. S. Stone, "Footprints in the Cache", Trans.
Computer Systems 5, 4 (Nov. 1987), 305-329.

M. Y. Thompson, J. M. Barton, T. A. Jermoluk and J. C. Wagner,
"Translation U>okaside Buffer Synchronization in a Multiprocessor

101

System", Proceedings of the 1988 Winder USENIX Conference,
Dallas, Texas, February 9-12, 1988, 297-302.

[TzS85] S. Tzou andY. Shim, "A Study on the In-Cache Address Translation
Mechanism of SPUR", CS252 Term Project, Computer Science Div.,
EECS Dpt., Univ. of Calif. at Berkeley, Fall 1985.

[TAG87] S. Tzou, D. P. Anderson and G. S. Graham, "Efficient Local Data
Movement in Shared-Memory Multiprocessor Systems", Technical
Report No. UCB/CSD 87/385, Computer Science Div., EECS Opt.,
Univ. of Calif. at Berkeley, Dec. 1987.

[TzA88] S. Tzou and D. P. Anderson, "A Performance Evaluation of the
DASH Message-Passing System", Technical Report No. UCB/CSD
88/452, Computer Science Div., EECS Dpt., Univ. of Calif. at
Berkeley, Nov. 1988.

[WaM87] R. W. Watson and S. A. Mamrak, "Gaining Efficiency in Transport
Services by Appropriate Design and Implementation Choices",
Trans. Computer Systems 5, 2 (May 1987), 97-120.

[WeG89] W. Weber and A. Gupta, "Analysis of Cache Invalidation Patterns
in Multiprocessors", Proc. Third International Conf on
Architectural Support for Programming Languages and Operating
Systems , Boston, Massachusetts, Apr. 3-6, 1989, 243-256.

[Wil87] R. Wilson, ''Designers Rescue Superminicomputers From 1/0
Bottleneck", Computer Design, Oct. 1987, 61-71.

[WEG86] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, J. M. Pendleton, S.
A. Ritchie, G. S. Taylor, R. H. Katz and D. A. Patterson, "An In­
Cache Address Translation Mechanism", Proc. 13th Intl. Symp. of

Computer Architecture, June 1986, 358-365.

[WoK89] D. A. Wood and R. H. Katz, "Supporting Referenced and Dirty Bits
in SPUR's Virtual Address Cache", Proc. of The 16th Annual

International Symposium on Computer Architecture, Jerusalem,
Israel, May-June 1989, 122-130.

;

